金纳米旋转椭球的折射率传感特性分析与优化

夏伊丁·亚库普, 帕尔哈提江·吐尔孙, 武盼盼

PDF(851 KB)
光散射学报 ›› 2020, Vol. 32 ›› Issue (1) : 40-45. DOI: 10.13883/j.issn1004-5929.202001004
光散射理论

金纳米旋转椭球的折射率传感特性分析与优化

  • 夏伊丁·亚库普1,2, 帕尔哈提江·吐尔孙1,2*, 武盼盼1,2
作者信息 +

Analysis and Optimization of Refractive Index Sensing of Gold Nanospheroid

  • YAKUPU Xiayiding1,2, TUERSUN Paerhatijiang1,2*, WU Panpan1,2
Author information +
History +

摘要

对于金纳米颗粒在化学和生物传感中的应用,找到具有高品质因子的金纳米颗粒形状是近年来的研究热点。基于T矩阵方法和介电函数的尺寸修正模型,本文从理论上定量研究了金纳米旋转椭球的尺寸对其折射率灵敏度、半峰宽以及品质因子的影响。为了获得最佳传感性能,对品质因子进行了优化,并得到了最优的颗粒尺寸参数。结果发现,短半轴为11 nm和长半轴为49 nm的金纳米旋转椭球具有最大品质因子6.76。优化后的金纳米旋转椭球可以作为理想的化学和生物传感器。本研究为金纳米旋转椭球在化学和生物传感的应用中提供重要的理论依据。

Abstract

For the application of gold nanoparticles in chemical and biological sensing, finding the shape of gold nanoparticles with high figure of merit has become a research hotspot in recent years. Based on the T-matrix method with the size-dependent dielectric function, the influence of the size of gold nanospheroids on its refractive index sensitivity, linewidth and figure of merit was studied quantitatively in this paper. In order to obtain the best sensing performance, the figure of merit was optimized and the optimal particle size parameters were obtained. The results show that the gold nanospheroids with the minor semi-axis of 11 nm and the major semi-axis of 49 nm has a maximum figure of merit of 6.76. The optimized gold nanospheroids can be treated as potential candidates for chemical and biological sensing. This study provides an important theoretical basis for the application of gold nanospheroids in chemical and biological sensing.

关键词

金纳米颗粒 / T矩阵方法 / 传感 / 品质因子 / 优化

Key words

Gold nanoparticles / T-matrix method / Sensing / Figure of merit / Optimization

引用本文

导出引用
夏伊丁·亚库普, 帕尔哈提江·吐尔孙, 武盼盼. 金纳米旋转椭球的折射率传感特性分析与优化. 光散射学报. 2020, 32(1): 40-45 https://doi.org/10.13883/j.issn1004-5929.202001004
YAKUPU Xiayiding, TUERSUN Paerhatijiang, WU Panpan. Analysis and Optimization of Refractive Index Sensing of Gold Nanospheroid. Chinese Journal of Light Scattering. 2020, 32(1): 40-45 https://doi.org/10.13883/j.issn1004-5929.202001004

参考文献

[1]Langer J, Novikov S M, Liz-marzan L M. Sensing using plasmonic nanostructures and nanoparticles[J]. Nanotechnology, 2015, 26(32): 322001.
[2]Gomes R D F R, Martins M J, Baptista A, et al. Study of a nano optical antenna for intersatellite communications[J]. Optical and Quantum Electronics, 2017, 49(4): 1-22.
[3]Khatua S, Paulo P M R, Yuan H F, et al. Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods[J]. ACS Nano, 2014, 8(5): 4440-4449.
[4]Lai C H, Wang G A, LING T K, et al. Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial[J]. Scientific Reports, 2017, 7(1): 5446-5454.
[5]Starowica Z, Kedra A, Berent K, et al. Influence of Ag nanoparticles microstructure on their optical and plasmonic properties for photovoltaic applications[J]. Solar Energy, 2017, 158: 610-616.
[6]Xia H W, Gao Y J, Yin L, et al. Light-triggered covalent assembly of gold nanoparticles for cancer cell photothermal therapy[J]. ChemBioChem, 2019, 20(5): 667-671.
[7]Sherry L J, Chang S-H, Schatz G C, et al. Localized surface plasmon resonance spectroscopy of single silver nanocubes[J]. Nano Letters, 2005, 5(10): 2034-2038.
[8]Du C L, Wang B B, Sun F, et al. Refractive index sensitivities of plane Ag nanosphere cluster sensors[J]. Sensors and Actuators B-Chemical, 2015, 215: 142-145.
[9]Tuersun P, Han X E. Optimizing the figure of merit of gold nanoshell-based refractive index sensing[J]. Optik, 2016, 127(1): 250-253.
[10]Zhu J, Zhang F, LI J J, et al. Optimization of the refractive index plasmonic sensing of gold nanorods by nonuniform silver coating[J]. Sensors and Actuators B-Chemical, 2013, 183(13): 556-564.
[11]Wang S A, Sun X H, Ding M J, et al. The investigation of an LSPR refractive index sensor based on periodic gold nanorings array[J]. Journal of Physics D: Applied Physics, 2018, 51(4): 045101.
[12]Dolatabady A, Granpayeh N, Nezhad V F. A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator[J]. Optics Communications, 2013, 300(14): 265-268.
[13]Jana D, Matti C, He J, et al. Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing[J]. Analytical Chemistry, 2015, 87(7): 3964-3972.
[14]Abumazwed A, Kubo W, Tanaka T, et al. Improved method for estimating adlayer thickness and bulk RI change for gold nanocrescent sensors[J]. Scientific Reports, 2018, 8(1): 6683-6692.
[15]Li G Z, Hu H J, Wu L. Tailoring Fano lineshapes using plasmonic nanobars for highly sensitive sensing and directional emission[J]. Physical Chemistry Chemical Physics, 2018, 21(1): 252-259.
[16]Konig T, Kodiyath R, Combs Z A, et al. Silver nanocube aggregates in cylindrical pores for higher refractive index plasmonic sensing[J]. Particle and Particle Systems Characterization, 2014, 31(2): 274-283.
[17]Jankovic N, Cselyuszka N. Multiple Fano-Like MIM plasmonic structure based on triangular resonator for refractive index sensing[J]. Sensors, 2018, 18(1): 287-297.
[18]Mishchenko, M. I. Light scattering by size-shape distribution of randomly oriented axially symmetric particles of a size comparable to a wavelength[J]. Applied Optics, 1993, 32: 4652-4666.
[19]Bohren C F, Huffman D R. Absorption and scattering of light by small particles[M]. New York: Wiley; 1983.
[20]Kreibig U, Vollmer M. Optical properties of metal clusters[M]. New York: Springer, 1995.
[21]Rakic A D, Djurisic A B, Elazar J M, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Applied Optics, 1998, 37: 5271-5283.
[22]Averitt R D, Westcott S L, Halas N J. Linear optical properties of gold nanoshells[J]. Journal of the Optical Society of America B, 1999, 16: 1824-1832.
[23]Daimon M, Masumura A. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region[J]. Applied Optics, 2007, 46(18): 3811-3820.

基金

国家自然科学基金项目(11764042),新疆维吾尔自治区高校科研计划项目(XJEDU2016I032),新疆维吾尔自治区“百名青年博士引进计划”项目,新疆师范大学新型光源与微纳光学重点实验室招标课题(XJNUSYS092017A02)资助
PDF(851 KB)

118

Accesses

0

Citation

Detail

段落导航
相关文章

/