基于单个花状银纳米颗粒的表面增强拉曼散射效应研究

陶晨阳, 宁欢, 陈海艺, 范天瑜, 詹依婷, 杨硕

PDF(1135 KB)
光散射学报 ›› 2020, Vol. 32 ›› Issue (1) : 46-51. DOI: 10.13883/j.issn1004-5929.202001005
表面增强拉曼散射技术

基于单个花状银纳米颗粒的表面增强拉曼散射效应研究

  • 陶晨阳, 宁欢, 陈海艺, 范天瑜, 詹依婷, 杨硕*
作者信息 +

Surface-enhanced Raman Scattering Study of Individual Flower-like Silver Nanoparticles

  • TAO Chenyang, NING Huan, CHEN Haiyi, FAN Tianyu, ZHAN Yiting, YANG Shuo*
Author information +
History +

摘要

在室温下,以硝酸银为银源,抗坏血酸为还原剂,通过调节表面活性剂聚乙烯吡络烷酮的浓度,实现对花状银纳米颗粒的可控制备。利用扫描电子显微镜、原子力显微镜、X射线衍射和X射线能谱等手段检测并分析了材料的形貌结构和成分组成。实验结果表明,当聚乙烯吡络烷酮的浓度为0.1 mol/L时,所制备花状银纳米颗粒的表面结构达到最精细的状态且颗粒的尺寸达到微米量级,适合对单颗粒进行定位与光学性质研究。以结构最优化的花状银纳米颗粒为表面增强拉曼散射基底材料,以羟基苯甲酸为探针,对单个和少数颗粒的表面增强拉曼散射效应进行了研究,并借助暗场散射光谱分析了基底的表面增强拉曼散射机理。结果显示,该花状银纳米颗粒因其独特的表面结构为拉曼信号增强提供了大量“热点”。良好的拉曼性能以及较低的制备成本表明,该新型表面增强拉曼散射基底具有很大的应用前景。

Abstract

Flower-like silver nanoparticles are well-controlled synthesized at room temperature by using silver nitrate as silver precursor, ascorbic acid as reductant and polyvinyl pyrrolidone with different concentrations as surfactant. Their structure and elemental composition are characterized by scanning electronic microscopy, atomic force microscope, X-ray diffraction and energy dispersive X-ray spectroscopy. When the concentration of polyvinyl pyrrolidone is up to 0.1 mol/L, the finest surface structure of the prepared flower-like silver nanoparticles is obtained, and the size of the particles reaches micron scale, which is suitable for the location and optical property study of single particles. The surface-enhanced Raman scattering (SERS) activity of individual and a few structure-optimized flower-like silver nanoparticle substrates are investigated using p-hydroxybenzoic acid as probes. The SERS mechanism of the substrates is analyzed by mean of dark field scattering spectroscopy. The experimental results indicate that the special surface structures of the flower-like silver nanoparticles provide large quantities of “hot spots” for the enhanced Raman intensity. The satisfying SERS properties combined with low synthesis costs show the prospective application possibilities of this novel SERS substrate.

关键词

银纳米颗粒 / 花状结构 / 单个粒子 / 局域表面等离子体共振 / 表面增强拉曼散射

Key words

silver nanoparticles / flower-like structure / individual particle / localized surface plasmon resonance / surface-enhanced Raman scattering

引用本文

导出引用
陶晨阳, 宁欢, 陈海艺, 范天瑜, 詹依婷, 杨硕. 基于单个花状银纳米颗粒的表面增强拉曼散射效应研究. 光散射学报. 2020, 32(1): 46-51 https://doi.org/10.13883/j.issn1004-5929.202001005
TAO Chenyang, NING Huan, CHEN Haiyi, FAN Tianyu, ZHAN Yiting, YANG Shuo. Surface-enhanced Raman Scattering Study of Individual Flower-like Silver Nanoparticles. Chinese Journal of Light Scattering. 2020, 32(1): 46-51 https://doi.org/10.13883/j.issn1004-5929.202001005

参考文献

[1]Hu L, Kim H S, Lee J Y, et al. Scalable coating and properties of transparent, flexible, silver nanowire electrodes[J]. ACS Nano, 2010, 4: 2955-2963.
[2]Muhudin L, Suharyadi E, Utomo A B S, et al. Optical properties of silver nanoparticles for surface plasmon resonance-based biosensor applications[J]. Journal of Modern Physics, 2015, 6: 1071-1076.
[3]Joseph S, Mathew B. Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes[J]. J Mol Liq, 2015, 204: 184-191.
[4]吕璞, 龚继来, 王喜洋, 等. 表面增强拉曼散射技术鉴别大肠杆菌和志贺氏菌的研究[J]. 中国环境科学, 2011, 31(9): 1523-1527. (Lü Pu, LI Tao, Wang Xiyang, et al. Detection and discrimination of escherichia coli and shigella spp. using surface-enhanced Raman spectroscopy[J]. China Environmental Science, 2011, 39(9): 1523)
[5]Sepúlveda B, Angelomé P C, Lechuga L M, et al. LSPR-based nanobiosensors[J]. Nanotoday, 2009, 4(3): 244-251.
[6]Shim S, Pham X H, Cha M G, et al. Size effect of gold on Ag-coated Au nanoparticle-embedded silica nanospheres[J]. RSC Adv, 2016, 6: 48644-48650.
[7]Liou P, Nayigiziki F X, Kong F, et al. Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples[J]. Carbohyd Polym, 2017, 157: 643-650.
[8]Jia Y, Zhang L, Song L, et al. Giant vesicles with anchored tiny gold nanowires: fabrication and surface-enhanced Raman scattering[J]. Langmuir, 2017, 33(46): 13376-13383.
[9]Kuttner C, Mayer M, Dulle M, et al. Seeded growth synthesis of gold nanotriangles: size control, SAXS analysis, and SERS performance[J], ACS Appl Mater Interfaces, 2018, 10(13): 11152-11163.
[10]Rong Y, Zhang L, Liu Z, et al. Facile synthesis of uniform raspberry-Like gold nanoparticles for high performance surface enhanced Raman scattering[J]. J Nanosci Nanotechno, 2016, 16(6): 5683-5688.
[11]Liang H, Li Z, Wang W, et al. Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering[J]. Adv Mater, 2009, 21: 4614-4618.
[12]Iravani S, Korbekandi H, Mirmohammadi S V, et al. Synthesis of silver nanoparticles: chemical, physical and biological methods[J]. Res. Pharm Sci, 2014, 9(6): 385-406.
[13]Nazar R, Sangermano M, Vitale A, et al. Silver polymer nanocomposites by photoreduction of AgNO3 and simultaneous photocrosslinking of the acrylic matrix: effect of PVP on Ag particle formation[J]. J Polym Eng, 2018, 38: 803-809.
[14]Wang H, Halas N J, Mesoscopic Au “Meatball” Particles[J], Adv Mater, 2008, 20: 820-825.
[15]Chen Y, Chen S J, Li S, et al. SERS and DFT study of p-hydroxybenzoic acid adsorbed on colloidal silver particles[J], Cell Mol Biol, 2015, 61(5): 11-15.

基金

浙江省自然科学基金青年基金项目(LQ19B030006);浙江省教育厅一般科研项目(Y201839009);温州大学大学生创新训练计划项目(JWSC2018071)
PDF(1135 KB)

148

Accesses

0

Citation

Detail

段落导航
相关文章

/