探讨还原氮化后对V2O5薄膜SERS效应的影响。以乙酰丙酮氧钒(C10H14O5V)为V源,采用非水解溶胶-凝胶法制备V2O5凝胶,通过氨气还原氮化V2O5薄膜。利用XRD、FE-SEM、UV-VIS-NIR、RAMAN测试薄膜结构、光学性能及SERS效应。结果表明,氮化后V以氮氧化合物的形式存在,随着氮化温度升高,氮元素逐步替代氧元素。随着氮化温度升高,薄膜上晶粒逐渐增大,成板条状,晶体粒径达25 nm。经600℃还原氮化得到的薄膜的紫外可见近红外区域的吸收率最高,且禁带宽度相对于未氮化时的V2O5薄膜较小。利用R6G作为探针分子研究了薄膜的SERS效应,结果表明氮化温度600 ℃时薄膜具有显著的拉曼增强效应,且高于未氮化时的V2O5薄膜的拉曼增强效果,在620 cm-1处拉曼信号峰强度达485 cps.
Abstract
V2O5 gel was prepared with C10H14O5V as V source by non-hydrolytic sol-gel method,then the V2O5 films was reduction nitriding by ammonia gas.XRD,FE-SEM, UV-VIS-NIR and RAMAN were used to characterize the membrane structure, optical properties and SERS effect.The results showed that with the increase of nitridation temperature, the grain size on the film increased gradually, and the grain development became better and better, and the crystal size reached 25 nm.After 600 ℃ reduction get the thin films, UV visible near infrared region the highest absorption rate, and forbidden band width is smaller than that of V2O5 films without nitriding.R6G was used as the probe molecule to study the SERS effect of thin film, and the results showed that the thin films had significant Raman enhancement effect at the nitridation temperature of 600, which was higher than that of V2O5 thin film without nitridation, and the Raman signal peak strength reached 485 cps at 620 cm-1.
关键词
氮化钒 /
五氧化二钒 /
表面增强拉曼光谱
{{custom_keyword}} /
Key words
vanadium nitride /
vanadium pentoxide /
SERS
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Rodríguez-fermández D, Langer J, Henriksen-lacey M, et al. Hybrid Au-SiO2 core-satellite colloids as switchable SERS tags[J]. Chem Materials, 2015, 27(7): 2540-2545.
[2]Liu N, Zhang P, Li L, et al. Silver-embedded zeolite crystals as substrates for surface-enhanced Raman scattering [J]. Journal of Materials Science, 2011, 46(9): 3162-3168.
[3]Yevgeniya K, Mariia E, Pavel P, et al. Flexible SERS substrate for portable Raman analysis of biosamples[J]. Applied Surface Science, 2018, 458(11): 95-99.
[4]丁倩倩. Au基复合纳米催化剂的性能及其SERS原位监测催化过程的研究[D]. 中国科学技术大学, 2016.(Ding Qianqian. Catalytic performance of Au-based nanocatalysts and in situ SERS monitoring of catalytic reaction[D]. University of Science and Technology of China, 2016.)
[5]朱奥男, 高稔现, 陈雷, 等. 基于倾斜Ag纳米棒表面等离子共振的SERS光谱研究[J]. 光谱学与光谱分析, 2018, 38(S1): 161-162.(Zhu Aonan, Gao Renxian, Chen Lei, et al. Study on SERS Spectra of Plasma Resonance on the Surface of Slanted Ag Nanoparticles[J]. Spectroscopy and spectral analysis, 2018, 38(S1): 161-162.)
[6]汤俊琪, 田超, 曾崇毅, 等. 碱性银胶的表面增强拉曼效应及对牛奶中三聚氰胺的检测[J]. 光谱学与光谱分析, 2013, 33(03): 709-713.(Tang Junqi, Tian Chao, Zeng Chongyi, et al. Alkaline silver colloid for surface enhanced raman scattering and application to detection of melamine doped milk[J]. Spectroscopy and Spectral Analysis, 2013, 33(3): 709-713.)
[7]Yang L, Qin X, Jiang X, et al. SERS investigation of ciprofloxacin drug molecules on TiO2 nanoparticles[J]. Physical Chemistry Chemical Physics, 2015, 17(27): 17809-17815.
[8]Zhao J, Lin J, Wei H, et al. Surface enhanced Raman scattering substrates based on titanium nitride nanorods[J]. Optical Materials, 2015, 47(9): 219-224.
[9]李书超. 均相和多相体系中钒氧物种的SERS研究[D]. 南京大学, 2015.(LI Shuchao. The SERS study of V-O aggregation state in homogeneous and heterogeneous systems[D]. Nanjing University, 2015.)
[10]Pan J, Li M, Luo Y Y, et al. Synthesis and SERS activity of V2O5 nanoparticles[J]. Applied Surface Science, 2015, 333(4): 34-38.
[11]Xiang X, Shi X, Gao X, et al. Effect of N-doping on absorption and luminescence of anatase TiO2 films[J]. Chinese Physics Letters, 2012, 29(2): 027801.
[12]Moskovits, Martin. Surface-enhanced spectroscopy[J]. Reviews of Modern Physics, 1985, 57(3):783-826.
[13]Cheng C, Yan B, Wong S M, et al. Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays[J]. ACS Applied Materials &Interfaces, 2010, 2(7):1824-1828.
[14]Chen Y, Jaakola J J, Säynätjoki A, et al. Glass-embedded silver nanoparticlepatterns by masked ion-exchange process for surface-enhanced Raman scattering[J]. J Raman Spectrosc. 2011, 42(5): 936-940.
[15]Liu C S, Li B H, Chen C H, et al. Enhancement in SERS intensities of azo dyes adsorbed on ZnO by plasma treatment[J]. Journal of Raman Spectroscopy, 2014, 45(5): 332-337.
[16]Moskovits M. Surface-enhanced spectroscopy[J]. Reviews of Modern Physics, 1985, 57(3): 783-826.
[17]邱文强, 陈荣, 程敏, 等. 表面增强拉曼散射机理研究进展[J]. 激光生物学报, 2010, 19(5):700-705.(Qiu Wenqiang, Chen Rong, Cheng Min, et al. Advance in mechanism on surface-enhanced Raman scattering[J]. Acta Laser Biology Sinica, 2010, 19(5): 700-705.)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(51272066),河北省自然科学基金(E2019209474)和华北理工大学杰出青年基金(JQ201712)
{{custom_fund}}