油类污染物具有破坏海洋生态系统和间接污染大气及土壤的危害,快速、准确地检测污染物的成分及其浓度具有重要意义。由于油类污染物光谱重叠严重,因此难以通过传统荧光分析准确加以区分。本文基于激光诱导荧光技术,以氙灯作为激发光设计荧光光谱检测系统,并对0#柴油、92#汽油和煤油进行扫描和检测,从而获得激发/发射光谱以及最佳激发/发射波长。并对该系统的软件算法部分进行改进,运用Savitzky-Golay卷积平滑直接获得更加精确的激发/发射光谱,更能全面、准确地反映油类物质的荧光特性信息。并与传统的荧光光谱仪得到的光谱图进行对比,经实验验证激光诱导荧光技术的荧光光谱检测系统的有效性,对油类污染物的荧光光谱信号的检测具有更高的灵敏度。
Abstract
Oil pollutants have the danger of destroying marine ecosystems and indirectly polluting the atmosphere and soil. It is of great significance to quickly and accurately detect the components and concentrations of pollutants. Due to the serious overlap of their spectra, it is difficult to distinguish them accurately by traditional fluorescence analysis. Based on laser-induced fluorescence technology, a fluorescent spectrum detection system was designed with xenon lamp as excitation light, and 0# diesel, 92# gasoline and kerosene were scanned and detected to obtain excitation/emission spectrum and optimal excitation/emission wavelength. The software algorithm part of the system is improved, and the Savitzky-Golay convolution smoothing is added to directly obtain a more accurate excitation/emission spectrum, which can more comprehensively and accurately reflect the fluorescence characteristic information of the substance. Compared with the spectrum obtained by the traditional fluorescence spectrometer, the experimental results verify the effectiveness of the fluorescence-induced fluorescence detection system of laser-induced fluorescence technology, and have higher sensitivity for the detection of fluorescence spectral signals of oil pollutants.
关键词
激光诱导荧光 /
油类污染物 /
光谱 /
卷积平滑
{{custom_keyword}} /
Key words
Laser Induced Fluorescence /
oil contaminants /
spectrum /
convolution smoothing
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]赵升,耿晓,孙蓓蓓,等.重质原油和轻质原油水溶性组分对紫贻贝(Mytilus edulis)毒理效应的研究[J].生态毒理学报, 2016, 11(4): 272-279 (Zhao Sheng, Geng Xiao, Sun Beibei, et al. Toxicological effects of water-soluble components of heavy crude oil and light crude oil on Mytilus edulis[J]. Journal of Ecotoxicology, 2016, 11(4): 272-279).
[2]王翔,赵南京,俞志敏,等.不同土壤物理性质下石油类污染物LIF发射特征研究[J].光谱学与光谱分析, 2018, 38(11): 227-231 (Wang Xiang, Zhao Nanjing, Yu Zhimin, et al. Study on LIF emission characteristics of petroleum pollutants under different soil physical properties[J]. Spectroscopy and Spectral Analysis, 2018, 38(11): 227-231).
[3]杨仁杰,尚丽平,鲍振博,等.激光诱导荧光快速直接检测土壤中多环芳烃污染物的可行性研究[J].光谱学与光谱分析, 2011, 31(08): 2148-2150 (Yang Renjie, Shang Liping, Bao Zhenbo, et al. Feasibility Study of Rapid and Direct Detection of Polycyclic Aromatic Hydrocarbons in Soil by Laser Induced Fluorescence[J]. Spectroscopy and Spectral Analysis, 2011, 31(08): 2148-2150).
[4]Liu C, Feng X, Qian H, et al. Determination of Norfloxacin in Food by Capillary Electrophoresis Immunoassay with Laser-Induced Fluorescence Detector[J]. Food Analytical Methods, 2015, 8(3): 596-603.
[5]Li J, Xu M, Ma Q, et al. Sensitive determination of silicon contents in low-alloy steels using micro laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J]. Talanta, 2019, 194.
[6]武桂芬,高志娥,强彦.激光诱导荧光技术在疾病诊断中的应用研究[J].激光杂志, 2018, 39(05): 96-101 (Wu Guifen, Gao Zhie, Qiang Yan. Application of Laser-induced Fluorescence Technology in Disease Diagnosis[J]. Laser Journal, 2018, 39(05): 96-101).
[7]喀日耶姆·艾海提,米尔扎提·麦麦提,艾尔肯·依不拉音.激光光源-在线荧光光谱检测中的光强度比较研究[J].光谱学与光谱分析, 2018, 38(01): 134-138 (Kazhem Yihhai, Mirzati Mamaiti, Erken Yibula. Comparison of light intensity in laser source-on-line fluorescence spectrometry[J]. Spectroscopy and Spectroscopy Analysis, 2018, 38 (01): 134-138).
[8]张正勇,桂冬冬,马蕴文,等.高维激光拉曼光谱的构建与降噪处理评价研究[J].应用激光, 2018, 38(03): 468-473 (Zhang Zhengyong, Gui Dongdong, Ma Yunwen, et al. Construction of high-dimensional laser Raman spectroscopy and evaluation of noise reduction treatment [J]. Applied Laser, 2018, 38(03): 468-473).
[9]Arvanitis G, Lalos A S, Moustakas K, et al. Feature Preserving Mesh Denoising Based on Graph Spectral Processing[J]. Ieee Transactions on Visualization and Computer Graphics, 2019, 25(3):1513-1527.
[10]Han H W, Tian L, Miao J Q. A Fuzzy Clustering Algorithm of Automatic Classification Based on EnFCM[J]. Advanced Materials Research, 2014, 989-994:1489-1492.
[11]Acharya D, Rani A, Agarwal S, et al. Application of adaptive Savitzky-Golay filter for EEG signal processing[J]. Perspectives in Science, 2016, 8:677-679.
[12]段鹏,程文播,钱庆,等.结合形态学重建与隶属度滤波的FCM分割算法[J].计算机辅助设计与图形学学报, 2019, 31(04): 541-551 (Duan Peng, Cheng Wenbo, Qian Qing, et al. FCM Segmentation Algorithm Based on Morphological Reconstruction and Membership Filtering[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(04): 541-551).
[13]赵昕海,张术臣,李志深,等.基于VMD的故障特征信号提取方法[J].振动.测试与诊断, 2018, 38(01): 11-19+202 (Zhao Xinhai, Zhang Shuchen, Li Zhishen, et al. Method of fault feature signal extraction based on VMD[J]. Vibration, Testing and Diagnosis, 2018, 38(01): 11-19+202).
[14]Tie Liu, Xin-Ge Li, Ji-Ye Wang, et al. Time-resolved fluorescence and chemometrics-assisted excitation-emission fluorescence for qualitative and quantitative analysis of scopoletin and scopolin in Erycibe obtusifolia Benth[J]. Spectrochimica Acta part a: Molecular and Biomolecular Spectroscopy, 2019, 219:96-103.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
唐山市应用基础研究计划项目(编号:18130204a)
{{custom_fund}}