气溶胶单颗粒的拉曼测量方法

常翩翩, 张韫宏

PDF(604 KB)
光散射学报 ›› 2020, Vol. 32 ›› Issue (4) : 295-300. DOI: 10.13883/j.issn1004-5929.202004001
综述

气溶胶单颗粒的拉曼测量方法

  • 常翩翩1, 张韫宏1*
作者信息 +

Raman Spectroscopy Measurement for Aerosol Single Particle

  • CHANG Pianpian, ZHANG Yunhong*
Author information +
History +

摘要

近年来随着工业迅速的发展,大气中气溶胶含量逐渐增加,导致雾霾天气频发,大气环境污染日益严峻。气溶胶污染问题主要与其物理化学性质有关,包括气溶胶的吸湿性、挥发性、酸性、相态和非平衡动力学等。文中综合论述了大气气溶胶单颗粒的拉曼测量,包括研究气溶胶的吸湿性、相变、pH和反应摄取系数,运用光镊-受激拉曼光谱技术测量气溶胶的挥发性、非平衡动力学和相变,以及运用表面增强拉曼光谱技术测量气溶胶的化学组成等。

Abstract

In recent years, with the rapid development of industry, the aerosol content in the atmosphere has gradually increased, resulting in frequent occurrence of haze-fog weather and increasingly severe environmental pollution. The aerosol pollution problem is mainly related to its physicochemical properties, including aerosol hygroscopicity, volatility, acidity, phase state and non-equilibrium kinetics. The research on Raman spectroscopy measurement of atmospheric aerosol single particle is summarily commented in this paper, including studying the hygroscopicity, phase transition, pH and reaction uptake coefficient of the aerosol, using optical tweezers-stimulated Raman spectroscopy to measure the volatility, non-equilibrium kinetics and phase transition, and using surface enhanced Raman spectroscopy to measure aerosol chemical composition.

关键词

气溶胶 / 单颗粒 / 拉曼

Key words

Aerosol / Signal particle / Raman

引用本文

导出引用
常翩翩, 张韫宏. 气溶胶单颗粒的拉曼测量方法. 光散射学报. 2020, 32(4): 295-300 https://doi.org/10.13883/j.issn1004-5929.202004001
CHANG Pianpian, ZHANG Yunhong. Raman Spectroscopy Measurement for Aerosol Single Particle. Chinese Journal of Light Scattering. 2020, 32(4): 295-300 https://doi.org/10.13883/j.issn1004-5929.202004001

参考文献

[1]Krieger U K, Braun C. Light-scattering intensity fluctuations in single aerosol particles during deliquescence[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2001, 70(4-6): 545-554.
[2]Shiraiwa M, Ammann M, Koop T, et al. Gas uptake and chemical aging of semisolid organic aerosol particles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 1008(27): 11003-11008.
[3]Wang Y, Jing B, Guo Y, et al. Water uptake of multicomponent organic mixtures and their influence on hygroscopicity of inorganic salts[J]. Journal of Environmental Sciences-China, 2016, 45: 156-163.
[4]Jing B, Tong S, Liu Q, et al. Hygroscopic behavior of multicomponent organic aerosols and their internal mixtures with ammonium sulfate[J]. Atmospheric Chemistry and Physics, 2016, 16(6): 4101-4118.
[5]Wang X W, Jing B, Tan F, et al. Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate[J]. Atmospheric Chemistry and Physics, 2017, 17(20): 12797-12812.
[6]Onasch T B, Siefert R L, Brooks S D, et al. Infrared spectroscopic study of the deliquescence and efflorescence of ammonium sulfate aerosol as a function of temperature[J]. Journal of Geophysical Research, 1999, 104(D17): 21317-21326.
[7]Brooks S D, Wise M E, Cushing M, et al. Deliquescence behavior of organic/ammonium sulfate aerosol[J]. Geophysical Research Letters, 2002, 29(19): 1-4.
[8]Li X H, Zhao L J, Dong J L, et al. Confocal Raman studies of Mg(NO3)2 aerosol particles deposited on a quartz substrate: supersaturated structures and complicated phase transitions[J]. Journal of Physical Chemistry B, 2008, 112(16): 5032-5038.
[9]Laskina O, Morris H S, Grandquist J R, et al. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles[J]. Journal of Physical Chemistry A, 2015, 119(19): 4489-4497.
[10]You Y, Smith M L, Song M, et al. Liquid-liquid phase separation in atmospherically relevant particles consisting of organic species and inorganic salts[J]. International Reviews in Physical Chemistry, 2014, 33(1): 43-77.
[11]Song M, Marcolli C, Krieger U K, et al. Morphologies of mixed organic/inorganic/aqueous aerosol droplets[J]. Faraday Discussions, 2013, 165: 289-316.
[12]Hodas N, Zuend A, Mui W, et al. Influence of particle-phase state on the hygroscopic behavior of mixed organic-inorganic aerosols[J]. Atmospheric Chemistry and Physics, 2015, 15(9): 5027-5045.
[13]Wu F M, Wang X W, Jing B, et al. Liquid-liquid phase separation in internally mixed magnesium sulfate/glutaric acid particles[J]. Atmospheric Environment, 2018, 178(1): 286-292.
[14]Zhou Q, Pang S F, Wang Y, et al. Confocal Raman studies of the evolution of the physical state of mixed phthalic acid/ammonium sulfate aerosol droplets and the effect of substrates[J]. Journal of Physical Chemistry B, 2014, 118(23): 6198-6205.
[15]Surratt J D, Chan A W, Eddingsaas N C, et al. Reactive intermediates revealed in secondary organic aerosol formation from isoprene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15): 6640-6645.
[16]Riva M, Budisulistiorini S H, Zhang Z, et al. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol[J]. Atmospheric Environment, 2016, 130(1): 5-13.
[17]Rindelaub J D, Mcavey K M, Shepson P B. The photochemical production of organic nitrates from α-pinene and loss via acid-dependent particle phase hydrolysis[J]. Atmospheric Environment, 2015, 100(1): 193-201.
[18]Hu K S, Darer A I, Elrod M J. Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates[J]. Atmospheric Chemistry and Physics, 2011, 11(16): 8307-8320.
[19]Prenni A J, Demott P J, Kreidenweis S M. Water uptake of internally mixed particles containing ammonium sulfate and dicarboxylic acids[J]. Atmospheric Environment, 2003, 37(30): 4243-4251.
[20]Losey D J, Ott E J, Freedman M A. Effects of high acidity on phase transitions of an organic aerosol[J]. Journal of Physical Chemistry A, 2018, 122(15): 3819-3828.
[21]Jang M, Czoschke N M, Lee S, et al. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions[J]. Science, 2002, 298(5594): 814-817.
[22]Guo H, Liu J, Froyd K D, et al. Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign[J]. Atmospheric Chemistry and Physics, 2017, 17(9): 5703-5719.
[23]Hennigan C J, Izumi J, Sullivan A P, et al. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles[J]. Atmospheric Chemistry and Physics, 2015, 15(5): 2775-2790.
[24]Rindelaub J D, Craig R L, Nandy L, et al. Direct measurement of pH in individual particles via Raman microspectroscopy and variation in acidity with relative humidity[J]. Journal of Physical Chemistry A, 2016, 120(6): 911-917.
[25]Craig R L, Nandy L, Axson J L, et al. Spectroscopic determination of aerosol pH from acid-base equilibria in inorganic, organic, and mixed systems[J]. Journal of Physical Chemistry A, 2017, 121(30): 5690-5699.
[26]Wei H, Vejerano E P, Leng W, et al. Aerosol microdroplets exhibit a stable pH gradient[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(28): 7272-7277.
[27]Chang P P, Chen Z, Zhang Y H, et al. Direct measurement of aerosol pH in individual malonic acid and citric acid droplets under different relative humidity conditions via Raman spectroscopy[J]. Chemosphere, 2020, 241: 124960.
[28]Seinfeld J H, Pandis S N. Atmospheric chemistry and physics: from air pollution to climate change[M]. USA: John Wiley & Sons, 2006.
[29]Zhu T, Shang J, Zhao D. The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze[J]. Science China-Chemistry, 2011, 54(1): 145-153.
[30]Zhao D, Song X, Zhu T, et al. Multiphase oxidation of SO2 by NO2 on CaCO3 particles[J]. Atmospheric Chemistry and Physics, 2018, 18(4): 2481-2493.
[31]Yu T, Zhao D, Song X, et al. NO2-initiated multiphase oxidation of SO2 by O2 on CaCO3 particles[J]. Atmospheric Chemistry and Physics, 2018, 18(9): 6679-6689.
[32]Melzer J E, Mcleod E. Fundamental Limits of Optical Tweezer Nanoparticle Manipulation Speeds[J]. ACS Nano, 2018, 12(3): 2440-2447.
[33]Wills J B, Knox K J, Reid J P. Optical control and characterisation of aerosol[J]. Chemical Physics Letters, 2009, 481(4-6): 153-165.
[34] Marshall F H, Miles R E H, Song Y-C, et al. Diffusion and reactivity in ultraviscous aerosol and the correlation with particle viscosity[J]. Chemical Science, 2016, 7(2): 1298-1308.
[35]Lv X J, Chen Z, Ma J B, et al. Evaporation of mixed citric acid/(NH4)2SO4H2O particles: Volatility of organic aerosol by using optical tweezers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 226: 117552.
[36]Lv X J, Chen Z, Ma J B, et al. Volatility measurements of 1, 2, 6-hexanetriol in levitated viscous aerosol particles[J]. Journal of Aerosol Science, 2019, 138: 105449.
[37]Ingram S, Cai C, Song Y C, et al. Characterising the evaporation kinetics of water and semi-volatile organic compounds from viscous multicomponent organic aerosol particles[J]. Physical Chemistry Chemical Physics, 2017, 19(47): 31634-31646.
[38]Cai C, Tan S, Chen H, et al. Slow water transport in MgSO4 aerosol droplets at gel-forming relative humidities[J]. Physical Chemistry Chemical Physics, 2015, 17(44): 29753-29763.
[39]Chang P P, Gao X Y, Cai C, et al. Effect of waiting time on the water transport kinetics of magnesium sulfate aerosol at gel-forming relative humidity using optical tweezers[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019: 117727.
[40]Stewart D J, Cai C, Nayler J, et al. Liquid-liquid phase separation in mixed organic/inorganic single aqueous aerosol droplets[J]. Journal of Physical Chemistry A, 2015, 119(18): 4177-4190.
[41]Halvorson R A, Vikesland P J. Surface-enhanced Raman spectroscopy (SERS) for environmental analyses[J]. Environmental Science & Technology, 2010, 44(20): 7749-7755.
[42]Craig R L, Bondy A L, Ault A P. Surface enhanced Raman spectroscopy enables observations of previously undetectable secondary organic aerosol components at the individual particle level[J]. Analytical Chemistry, 2015, 87(15): 7510-7514.
[43]Fu Y, Kuppe C, Valev V K, et al. Surface-enhanced Raman spectroscopy: A facile and rapid method for the chemical component study of individual atmospheric aerosol[J]. Environmental Science & Technology, 2017, 51(11): 6260-6267.
[44]Sun Z, Duan F, He K, et al. Sulfate-nitrate-ammonium as double salts in PM2.5: Direct observations and implications for haze events[J]. Science of the Total Environment, 2019, 647: 204-209.
[45]Dong X, Ohnoutek L, Yang Y, et al. Cu/Ag sphere segment void array as efficient surface enhanced Raman spectroscopy substrate for detecting individual atmospheric aerosol[J]. Analytical Chemistry, 2019, 91(21): 13647-13657.
[46]Sun Z, Duan F, He K, et al. Physicochemical analysis of individual atmospheric fine particles based on effective surface-enhanced Raman spectroscopy[J]. Journal of Environmental Sciences-China, 2019, 75: 388-395.

基金

国家自然科学基金项目(41875144,91544223,21473009,21373026)
PDF(604 KB)

230

Accesses

0

Citation

Detail

段落导航
相关文章

/