本文设计了一种基于长程等离子波导的表面增强拉曼光流体芯片,利用介质波导激发等离子波导的耦合结构减小传输损耗,增加传输距离,以实现拉曼信号的长程探测。在632.8 nm的激发光入射下,以金(Au)作为等离子波导芯层材料,PTFE做为介质光波导芯层材料,经仿真分析发现:介质光波导宽度为4 、厚度为0.2 ,等离子体波导宽度为4.5 、厚度为13 nm,两波导间距D为3.1 时,耦合效果最好,场强大小约1.8024×108,传输距离约0.3 mm,是单独使用等离子波导传输距离的两倍。该研究为实现表面增强拉曼微流体芯片长程探测提供了理论依据。
Abstract
In this paper, a surface-enhanced Raman scattering optical fluid chip based on long-range plasma waveguide is designed. The dielectric waveguide is used to excite plasma waveguide. The coupling signal transmit through the plasma waveguide and dielectric waveguide. It may reduce the transmission loss and increase transmission distance. The excitation light of 632.8 nm is used. The gold (Au) is as a plasma waveguide core layer and PTFE is as dielectric optical waveguide core layer. The simulation results show that the dielectric optical waveguide width of 4 m, thickness of 0.2 um, plasma waveguide width of 4.5 , thickness of 13 nm, the spacing D between two waveguide of 3.1 , coupling effect is best. The field intensity is about 1.8024×108 and the transmission distance is about 0.3 mm which is twice of used alone the plasma waveguide transmission distance. This study provides a theoretical basis for long - range detection of surface-enhanced Raman microfluidic chip.
关键词
等离子波导表面增强拉曼散射 /
长程探测
{{custom_keyword}} /
Key words
plasma waveguide /
surface-enhanced Raman scattering /
long-range detecting
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Lu H, Zhu L, Zhang C, et al. Highly uniform SERS-active microchannel on hydrophobic PDMS: a balance of high reproducibility and sensitivity for detection of proteins[J], RSC Adv, 2017,7:8771-8778.
[2]Lee M H, Kim S H, Kim E S, et al. Interference-based optical measurement of fluidic flow in a hollow-core fiber[J]. Photonic Sensors, 2018,8(1): 7-12.
[3]Li Y, Ren Y T, et al. Manipulation of Microscale Fluid Using Laser-Irradiated Nanoparticle Arrays[J]. Plasmonics, 2019,14(6): 1555-1563.
[4]Pandeeswar M, Rohilla S, Ahmad Esmaielzadeh Kandjani. SERS and fluorescence-based ultrasensitive detection of mercury in water[J]. Biosensors & Bioelectronics, 2018, 100:556–564.
[5]任斌, 田中群. 表面增强拉曼光谱的研究进展[J]. 现代仪器与医疗, 2004, 10(5):1-8.(Ren Bin, Tian Zhongqun. Research progress of surface enhanced Roman spectroscopy[J].Modern Instruments and Medical Treatment,2004, 10(5):1-8)
[6]吴美梅,张超,张灿,孙倩倩,刘玫.三维金字塔立体复合基底表面增强拉曼散射特性[J].物理学报,2020,69(05):257-265.(Wu Meimei, Zhang Chao, Sun Qiangqian,et al. Surface Enhanced Raman Scattering Properties of Three-dimensional Pyramid Composite Substrate[J].Acta Phys Sinica, 2020, 69(05): 257-265)
[7]王志乐,王著元,宗慎飞,崔一平.微流控SERS芯片及其生物传感应用[J].中国光学,2018,11(03):513-530.(Wang Zhile, Wang Zhuyuan, Zong Shenfei, et al. Microfluidic SERS chip and its biosensor application[J].Chinese Optics,2018,11(03): 53-530)
[8]Mingze Sun,Binghan Li,Xiaojia Liu,Jiayin Chen,Taotao Mu,Lianqing Zhu,Jinhong Guo,Xing Ma.Performance enhancement of paper-based SERS chips by shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Journal of Materials Science &Technology, 2019,35(10):2207-2212.
[9]Khetani A, Momenpour A, Alarcon EI, et al.Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS)[J], Biomed Opt Express, 2015, 6(11):4599.
[10]Wang C, Xu Y, Deng C, et al. Design and preparation of a recyclable microfluidic SERS chip with integrated Au@Ag/TiO2 NTs[J], Rsc Adv, 2016, 6:113115-113122.
[11]Takahashi R, Fukuoka T, Utsumi Y, et al. Optofluidic Devices with Surface-Enhanced Raman Scattering Active Three-Dimensional Gold Nanostructure[J]. Jpn J Appl Phys. 2013, 52(6s): 06GK12.
[12]Zhang N, Humbert G, Gong T, et al. Side-channel photonic crystal fiber for surfaceenhanced Raman scattering sensing[J]. Sens Actuators B: Chemical. 2016,223:195-201.
[13]Tang F, Adam PM, Boutami S, Theoretical investigation of SERS nanosensors based on hybrid waveguides made of metallic slots and dielectric-strips, Opt Express[J],2016, 24(19):21244-21255.
[14]Berini P. P Advances in Optics and Photonics lasmon-polariton waves guided bythin lossy metal films of finite width:Boundmodes of asymmetric structures[J].Phys Rev. B, 2000, 611(15): 10484-10503.
[15]Lai C H, Chen G,Chen L,et al.Integrated Surface-Enhanced Raman Spectroscopy (SERS) Chip Based on a Total Reflection Liquid Core Waveguide[J],App Spectro,2017,71(8) :2021- 2025.
[16]Wan R Y, Liu F, Huang Y D. Ultrathin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide[J]. Optics letters,2010,35(2):244-246.
[17]Yang F Z, Sambles J R., Bradberry G W, Long-range surface mode supported by very thin silverfilms[J],Phys RevLett, 1991, 66 (15) :2030.
[18]Pierre Berini, Long-range surface plasmon polaritons[J], Adv Opt Photonics, 2009, 1 (1) : 484-588.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
重庆市科委基础科学与前沿技术研究项目(csts2017jcyjAX0427)
{{custom_fund}}