基于SERS阵列的铜绿假单胞菌代谢产物铜绿菌素即时检测

陈燕, 陈欢, 陈周恬, 李颖颖, 杨丹婷, 沈立亮

PDF(1408 KB)
光散射学报 ›› 2020, Vol. 32 ›› Issue (4) : 312-319. DOI: 10.13883/j.issn1004-5929.202004004
表面增强拉曼散射技术

基于SERS阵列的铜绿假单胞菌代谢产物铜绿菌素即时检测

  • 陈燕1, 陈欢1, 陈周恬1, 李颖颖1, 杨丹婷1*, 沈立亮2*
作者信息 +

SERS array toward point-of-care detection of Pseudomonas aeruginosa metabolite

  • CHEN Yan1, CHEN Huan1, CHEN Zhoutian1, LI Yingying1, YANG Danting1*, SHEN Liliang2*
Author information +
History +

摘要

铜绿假单胞菌可导致临床慢性感染,是烧伤、泌尿道感染、囊性纤维化等感染的重要致病菌。铜绿菌素是铜绿假单胞菌产生的次生代谢产物,可导致感染患者细胞死亡,与高死亡率息息相关,可作为铜绿假单胞菌检测的生物标志物。铜绿菌素的直接、即时检测能够极大程度降低临床上铜绿假单胞菌的诊断时间,提高临床治疗的效率。为实现以上目标,在本文中,我们通过静电吸附的机理在氨基硅烷化的玻片表面修饰一层AgNPs,构建了一种简单、价格低廉的具有表面增强拉曼效应的阵列传感平台,以实现培养基及唾液中铜绿菌素的直接、快速检测。结果表明铜绿菌素主要的SERS峰位主要为420,543,597,680,1354,1598和1615 cm-1,其中用来进行定量分析的420 cm-1和1615 cm-1处拉曼位移分别归属于-CCN环弯曲和-C-N弯曲,及C=C环拉伸和C=N环拉伸。通过对肉汤培养基和唾液中的铜绿菌素直接检测,发现检测限分别为0.5 μm和0.35 μm,远低于临床样本中铜绿菌素的检测浓度,每个样品的检测时间为10 s。这表明我们所构建的SERS基底阵列,具备适用于临床上铜绿假单胞菌代谢产物铜绿菌素的高灵敏即时检测的潜力。

Abstract

Pseudomonas aeruginosa which can lead to chronic clinical infection is an important pathogen of burns, urinary tract infection and cystic fibrosis. As the secondary metabolites produced by P. aeruginosa, pyocyanin (PYO) can cause cell death in patients with infection, closely related to high mortality. Therefore, the direct and rapid detection of PYO, as the biomarker of P. aeruginosa, is able to reduce the analysis time and improve the diagnostic effect. Here, we constructed a SERS array platform using silver nanoparticles modified glass slides via electrostatic adsorption to achieve the direct and rapid detection of pyocyanin in the culture medium and saliva. The results showed that, the main SERS peak shifts of PYO were mainly 420, 543, 597, 680, 1354, 1598 and 1615 cm-1. The Raman shifts at 420 cm-1 and 1615 cm-1 used for quantitative analysis were respectively attributed to -CCN ring bending and C=N ring bending, as well as C=C ring stretching and C=N ring stretching. The limit of detection of PYO in broth medium and saliva were 0.5 μM, and 0.35 μM, respectively. It is far below the detection concentration of PYO in clinical samples. This shows that the surface modified SERS array we constructed has the potential to be capable of the point-of-care detection clinically with high sensitivity of the metabolites of P. aeruginosa.

关键词

表面增强拉曼光谱 / 铜绿菌素 / 铜绿假单胞菌 / 快速检测 / 阵列

Key words

surface-enhanced Raman spectroscopy / pyocyanin / Pseudomonas aeruginosa / rapid detection / array

引用本文

导出引用
陈燕, 陈欢, 陈周恬, 李颖颖, 杨丹婷, 沈立亮. 基于SERS阵列的铜绿假单胞菌代谢产物铜绿菌素即时检测. 光散射学报. 2020, 32(4): 312-319 https://doi.org/10.13883/j.issn1004-5929.202004004
CHEN Yan, CHEN Huan, CHEN Zhoutian, LI Yingying, YANG Danting, SHEN Liliang. SERS array toward point-of-care detection of Pseudomonas aeruginosa metabolite. Chinese Journal of Light Scattering. 2020, 32(4): 312-319 https://doi.org/10.13883/j.issn1004-5929.202004004

参考文献

[1]徐新东, 杜松枝, 李兰庆. 蛋鸡绿脓假单胞菌感染的研究 [J], 华中农业大学学报, 1984, 3(1): 83-88.(XuXindong, Du Songzhi, Li Lanqing. Studies on Pseudomonas aeruginosa infection of laying hens [J]. Jonrnal of Huazhong Agricultural College, 1984, 3 (1): 83-88.
[2]Das T, Ibugo A I, Klaremikemanefield W, et al. Role of Pyocyanin and Extracellular DNA in Facilitating Pseudomonas aeruginosa Biofilm Formation [M]. Microbial Biofilms - Importance and Applications, 2016.
[3]Flores-Mireles A L, Walker J N, Caparon M, et al. Urinary Tract Infections: Epidemiology, Mechanisms of Infection and Treatment Options [J]. Nature Reviews Microbiology, 2015, 13 (5): 269-284.
[4]Llor C, Bjerrum L. Antimicrobial Resistance: Risk Associated with Antibiotic Overuse and Initiatives to Reduce the Problem [J]. Therapeutic advances in drug safety, 2014, 5 (6): 229-41.
[5]Hauser, Alan R. The Type III Secretion System of Pseudomonas aeruginosa: Infection by Injection [J]. Nature Reviews Microbiology, 2009, 7 (9): 654-665.
[6]Susan H, Catherine M, Shailendra A, et al. Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa [J]. Toxins, 2016, 8 (8): 236.
[7]Dietrich L E, Price-Whelan A, Petersen A, et al. The Phenazine Pyocyanin is a Terminal Signalling Factor in the Quorum Sensing Network of Pseudomonas aeruginosa [J]. Molecular Microbiology, 2006, 61(5): 1308-1321.
[8]Filloux A, Ramos J L. Pseudomonas Methods and Protocols [J]. Methods in Molecular Biology, 2014:1149.
[9]Wang H, Zhou Y, Jiang X, et al. Simultaneous Capture, Detection, and Inactivation of Bacteria as Enabled by a Surface-Enhanced Raman Scattering Multifunctional Chip [J]. Angewandte Chemie-International Edition, 2015, 54 (17): 5132-5136.
[10]Feng J, de la Fuente-Núñez C, Trimble M J, et al. An in Situ Raman spectroscopy-based Microfluidic "Lab-on-a-chip" Platform for Non-destructive and Continuous Characterization of Pseudomonas aeruginosa Biofilms [J]. Chemical Communications, 2015, 51(43): 8966-8969.
[11]Bodelón G, Montes-García V, López-Puente V, et al. Detection and Imaging of Quorum Sensing in Pseudomonas aeruginosa Biofilm Communities by Surface-enhanced Resonance Raman scattering [J]. Nature Materials, 2016, 15: 1203-1211
[12]Polisetti S, Baig N F, Morales-Soto N, et al. Spatial Mapping of Pyocyanin in Pseudomonas Aeruginosa Bacterial Communities Using Surface Enhanced Raman Scattering [J]. Applied Spectroscopy, 2017, 71(2): 215-223.
[13]Žukovskaja O, Jahn I J, Weber K, et al. Detection of Pseudomonas aeruginosa Metabolite Pyocyanin in Water and Saliva by Employing the SERS Technique [J]. Sensors, 2017, 17(8): 1704
[14]Wu X, Chen J, Li X, Zhao Y, et al. Culture-free Diagnostics of Pseudomonas aeruginosa Infection by Silver Nanorod Array Sased SERS from Clinical Sputum Samples [J]. Nanomedicine, 2014, 10 (8): 1863-1870.
[15]Frens G. Controlled Nucleation for the Regulation of the Oarticle Size in Monodisperse Gold Suspensions [J]. Nature physical science, 1973, 241(105): 20-22.
[16]Lee P C, Meisel D. Adsorption and Surface-enhanced Raman of Dyes on Silver and Gold Sols [J]. The Journal of Physical Chemistry, 1982, 86 (17): 3391-3395.
[17]Nguyen C Q, Thrift W J, Bhattacharjee A, et al. Longitudinal Monitoring of Biofilm Formation via Robust Surface-enhanced Raman Scattering Quantification of Pseudomonas aeruginosa-produced Metabolites [J]. ACS applied materials & interfaces, 2018, 10 (15): 12364-12373.
[18]Žukovskaja O, Agafilushkina S, Sivakov V, et al. Rapid Detection of the Bacterial Biomarker Pyocyanin in Artificial Sputum Using a SERS-active Silicon Nanowire Matrix Covered by Bimetallic Noble Metal Nanoparticles [J]. Talanta, 2019, 202: 171-177.
PDF(1408 KB)

307

Accesses

0

Citation

Detail

段落导航
相关文章

/