基于等离子体四极共振的金纳米长方体颗粒的折射率传感性能研究

刘静雅, 张现周

PDF(2155 KB)
光散射学报 ›› 2020, Vol. 32 ›› Issue (4) : 335-342. DOI: 10.13883/j.issn1004-5929.202004007
化学和生物研究中的应用

基于等离子体四极共振的金纳米长方体颗粒的折射率传感性能研究

  • 刘静雅*, 张现周
作者信息 +

Study of the Refractive Index Sensing Performances of Au Nanocuboid Particles Based on the Plasmonic Quadrupole Resonance

  • LIU Jingya*, ZHANG Xianzhou
Author information +
History +

摘要

文章通过数值模拟系统地研究了单个金纳米长方体颗粒和金纳米长方体阵列的折射率传感性能。结果表明,四极共振的半峰全宽远小于偶极共振的半峰全宽。当纳米颗粒的边界变得尖锐时,四极共振的共振波长会发生“红移”,其折射率灵敏度和品质因子也会显著增加。金纳米长方体阵列的四极共振折射率传感性能(S≈787.72 nm /RIU, FOM≈13.82)优于单个颗粒的传感性能。等离子体四极共振在金纳米长方体阵列中的高灵敏度、大FOM和优异的稳定性使其在生物传感器领域具有潜在的应用前景。

Abstract

The refractive index (RI) sensing performances of the single large gold nanocuboid and the large Au nanocuboid arrays were systematically studied by numerical simulation. The results show that the full width at half maximum of quadrupole resonance is much smaller than that of dipole resonance for large asymmetric Au nanoparticles. When the ends of nanoparticles become angular (quadrate ends), the quadrupole resonance wavelength will occur “red shift”, and the quadrupole resonance would possess higher sensitivity and FOM. The RI sensing properties (S≈787.72 nm /RIU, and FOM≈13.82) of Au nanocuboid arrays at quadrupole resonance are both larger than the respective parameters of single particle. The high sensitivity, large FOM and superior stability of the quadrupole resonance in large Au nanocuboid arrays would endow it with potential application in the LSPR biosensor.

关键词

折射率传感 / 四极共振 / 金纳米长方体颗粒 / 阵列

Key words

RI sensing / quadrupole resonance / Au nanocuboid particles / Arrays

引用本文

导出引用
刘静雅, 张现周. 基于等离子体四极共振的金纳米长方体颗粒的折射率传感性能研究. 光散射学报. 2020, 32(4): 335-342 https://doi.org/10.13883/j.issn1004-5929.202004007
LIU Jingya, ZHANG Xianzhou. Study of the Refractive Index Sensing Performances of Au Nanocuboid Particles Based on the Plasmonic Quadrupole Resonance. Chinese Journal of Light Scattering. 2020, 32(4): 335-342 https://doi.org/10.13883/j.issn1004-5929.202004007

参考文献

[1]李志远, 李家方. 金属纳米结构表面等离子体共振的调控和利用[J].科学通报, 2011, 56(32): 2631-2661 (Li Zhiyuan, Li Jiafang. Recent progress in engineering and application of surface plasmon resonance in metal nanostructures (in Chinese) [J]. Chinese Sci Bull (Chinese Ver), 2011, 56(32): 2631-2661).
[2]Mayer K M, Hafner J H. Localized Surface Plasmon Resonance Sensors [J]. Chemical Reviews, 2011, 111(6):3828-3857.
[3]Li N, Zhao P, Astruc D. Anisotropic Gold Nanoparticles: Synthesis, Properties, Applications, and Toxicity [J]. Angewandte Chemie, 2014, 53(7):1756-1789.
[4]Dreaden E C, Alkilany A M, Huang X H, et al. The golden age: gold nanoparticles for biomedicine [J].Chemical Society Reviews, 2012, 41(7):2740-2779.
[5]Fang C, Zhao G, Xiao Y, et al. Facile Growth of High-Yield Gold Nanobipyramids Induced by Chloroplatinic Acid for High Refractive Index Sensing Properties [J]. Scientific Reports, 2016, 6:36706.
[6]夏伊丁·亚库普,帕尔哈提江·吐尔孙,武盼盼. 金纳米旋转椭球的折射率传感特性分析与优化[J]. 光散射学报,2019, 31(4):1004-5929 (Yakupu Xiayiding, Tuersun Paerhatijiang, Wu Panpan. Analysis and Optimization of Refractive Index Sensing of Gold Nanospheriod [J]. Journal of Light Scattering, 2019, 31(4):1004-5929).
[7]Chen H, Shao L, Woo K C, et al. Shape-Dependent Refractive Index Sensitivities of Gold Nanocrystals with the Same Plasmon Resonance Wavelength [J]. Journal of Physical Chemistry C, 2009, 113(41):17691-17697.
[8]Kelly K L, Coronado E, Zhao L, et al. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment [J]. Journal of Physical Chemistry B, 2003, 107: 668-677.
[9]Cabrera-Trujillo J M, Montejano-Carrizales J M, Zhang W, et al. Nucleation and Growth of Stellated Gold Clusters: Experimental Synthesis and Theoretical Study [J]. Journal of Physical Chemistry C, 2010, 114(49): 21051-21060.
[10]Joshi G K, Mcclory P J, Muhoberac B B, et al. Designing Efficient Localized Surface Plasmon Resonance-Based Sensing Platforms: Optimization of Sensor Response by Controlling the Edge Length of Gold Nanoprisms [J]. Journal of Physical Chemistry C, 2012, 116(39):20990-21000.
[11]Ye J, Shioi M, Lodewijks K, et al. Tuning plasmonic interaction between Au nanorings and a gold film for surface-enhanced Raman scattering [J]. Applied Physics Letters, 2010, 97(16):163106-3.
[12]Li Q, Zhuo X, Li S, et al. Production of Monodisperse Gold Nanobipyramids with Number Percentages Approaching 100% and Evaluation of Their Plasmonic Properties [J]. Advanced Optical Materials, 2015, 3(6):801-812.
[13]Shao L, Ruan Q, Jiang R, et al. Macroscale Colloidal Noble Metal Nanocrystal Arrays and Their Refractive Index-Based Sensing Characteristics [J]. Small, 2014, 10(4):802-811.
[14]Burgin J, Liu M, Guyot-Sionnest P. Dielectric Sensing with Deposited Gold Bipyramids [J]. Journal of Physical Chemistry C, 2008, 112(49):19279-19282.
[15]Li J, Liu S, Liu Y, et al. Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods [J]. Applied Physics Letters, 2010, 96(26):263103.
[16]Link S, El-Sayed M A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods [J]. Journal of Physical Chemistry B, 1999, 103(40):8410-8426.
[17]Yong Z, Lei D, Lam C, et al. Ultrahigh refractive index sensing performance of plasmonic quadrupole resonances in gold nanoparticles [J]. Nanoscale Research Letters, 2014, 9(1):187.
[18]Link S, El-Sayed M A . Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods [J]. Journal of Physical Chemistry B, 1999, 103(40):8410-8426.
[19]Kahnert F M. Numerical methods in electromagnetic scattering theory [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2003, 79-80:775-824.
[20]Johnson P B, Christy R W. Optical constants of the noble metals [J]. Physical Review B, 1972, 6(12): 4370-4379.
[21]Han S, Yang X. Controllable Synthesis, Structure and Property Modulation and Device Application of One-Dimensional Nanomaterials - Shape-Dependent Surface Plasmon Resonance of Ag Nanocrystallines in OPAA Template[J]. Proceedings Of The 4th International Conference On One-dimensional Nanomaterials (icon2011), 2012, Circuits Systems & Signal Processing:38-45.
[22]Mock J J, Barbic M, Smith D R, et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles [J]. Journal of Chemical Physics, 2002, 116(15):6755-6759.
[23]杨修春, 刘会欣, 李玲玲, 等. 影响贵金属纳米颗粒表面等离子体共振因素评述[J]. 功能材料, 2010, 041(002): 341-345 (Yang Xiuchun, Liu Huixin, Li Lingling, et al. Review on influence factors of surface plasmon resonance for nobel metal nanoparticles [J]. Journal of Functional Materials, 2010, 041(002): 341-345).
[24]Miller M M, Lazarides A A. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment [J]. Journal of Physical Chemistry B, 2005, 109(46): 21556-21565.

基金

河南省重点科技攻关项目(192102210202)
PDF(2155 KB)

361

Accesses

0

Citation

Detail

段落导航
相关文章

/