局域表面等离子共振不仅可以扩宽材料的光谱响应范围,还可以增强局部电场从而使待测分子的拉曼信号增强,在生命科学领域发挥着重要作用。本文建立了单个金纳米颗粒(gold nanoparticle,AuNP)和双个金纳米颗粒在全血环境中的模型,并采用三维有限元方法系统地研究颗粒尺寸、间隙以及全血消光系数对金纳米颗粒近场增强的影响。研究表明,在全血环境单个AuNP模型中,随着颗粒尺寸增大,共振峰红移。当颗粒尺寸为80 nm时,局部电场最大。相比于空气介质,在全血介质中的AuNP共振峰红移并且局域电场增强。全血的消光系数对局部电场的影响非常小,局部电场增强差异小于0.1 V/m。在全血环境双个AuNPs模型中,随着两颗粒间距减小,共振峰蓝移且局域电场明显增强。当两颗粒间距为1 nm时,拉曼增强因子可高达1011。该研究为全血环境中药物分子和生物标志物的表面增强拉曼散射灵敏性检测实验提供一定的理论指导。
Abstract
Localized surface plasmon resonance (LSPR) not only broadens the spectral response range of materials, but also enhances the local electric field so as to enhance the Raman signal of the molecule to be measured, playing an important role in the life sciences. In this paper, the model of single gold nanoparticle (AuNP) and double gold nanoparticles (AuNPs) in whole blood environment is established and the three-dimensional finite element method is used to systematically study effect of particle size, gap and whole blood extinction coefficient on near-field enhancement of AuNPs. The simulation results show that in single AuNP model of the whole blood environment, as the particle size increases, the plasmon resonance peak red-shifts, and the local electric field is the largest when the size is 80 nm. Compared with air medium, the AuNP resonance peak in whole blood medium red-shifts and the local electric field enhances. The effect of extinction coefficient of whole blood on local electric field was very small, and the difference of local electric field enhancement is less than 0.1 V/m. In the double AuNPs model of whole blood environment, as the gap between the two particles decreases, the plasmon resonance peak blue-shifts and the local electric field increases. When the distance between the two particles is 1 nm, the Raman enhancement factor can be as high as 1011. This study provides theoretical guidance for surface-enhanced Raman scattering (SERS) sensitivity testing of drug molecules and biomarkers in the whole blood environment.
关键词
全血环境 /
金纳米颗粒 /
近场增强 /
有限元法
{{custom_keyword}} /
Key words
whole blood enhancement /
AuNPs /
near- field enhancement /
finite-element method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Schuller J A, Barnard E S, Cai W S,et al. Plasmonicsfor Extreme Light Concentration and Manipulation [J]. Nature Materias, 2010, 9: 193-204.
[2]Dregely D, Taubert R, Dorfmüller J, et al. 3D Optical Yagi-Uda Nanoantenna Array [J]. Nature Communications, 2011, 2: 267-272.
[3]Xiao M D, Jiang R B, Wang F F,et al. Plasmon-Enhanced Chemical Reactions [J]. Journal of Materials Chemistry A, 2013, 1: 5790-5805.
[4]Shin J, Song M, Hafeez H, et al. Harvesting Near- and Far-Field Plasmonic Enhancements from Large Size Gold Nanoparticles for Improved Performance in Organic Bulk Heterojunction Solar Cells [J]. Organic Electronics, 2019, 66: 94-101.
[5]Chen N, Rong M, ShaoX, et al. Surface-enhanced Raman Spectroscopy of Serum Accurately Detects Prostate Cancer in Patients with Prostate-Specific Antigen Levels of 4-10 ng/mL [J]. International Journal of Nanomedicine, 2017, 12: 5399-5407.
[6]Willets K A, Duyne R P. Localized Surface Plasmon Resonance Spectroscopy and Sensing [J]. Annual Review of Physical Chemistry, 2007, 58(1): 267-297.
[7]Chen H J, Shao L L, Wang Q,et al. Gold Nanorods and Their Plasmonic Properties [J]. Chemical Society Reviews, 2017, 42: 2679-2724.
[8]Mayer K M,Hafner J H. Localized Surface Plasmon Resonance Sensors [J]. Chemical Reviews, 2011, 111(6): 3828-3857.
[9]Yao G Y, Liu Q L, Zhao, Z Y. Studied Localized Surface Plasmon Resonance Effects of Au Nanoparticles on TiO2 by FDTD Simulations [J]. Catalysts, 2018, 8 (6): 236-251.
[10]Laura C, Giuseppe V, Giuseppina L,et al. In Situ Photodeposited Nanocu on TiO2 as a Catalyst for Hydrogen Production under UV/Visible Radiation [J]. Applied Catalysis A: General, 2016, 518: 142-149.
[11]Chen Z Y, Chen N, Liu S P, et al. Raman Spectroscopy Measurement of Levofloxacin Lactate in Blood Using an Optical Fiber Nano-Probe [J]. Journal of Raman Spectroscopy. 2015, 46: 197-201.
[12]Ngo H T, Freedman E, Odion R A,et al. Direct Detection of Unamplified Pathogen RNA in Blood Lysate Using an Integrated Lab-in-a-Stick Device and Ultrabright SERS Nanorattles [J]. Scientific Reports, 2018, 8 (1), 4075-4088.
[13]Van D E, Boïng A, Harrison P,et al. Classification Functions and Clinical Relevance of Extracellular Vesicles [J]. Pharmacologicol Reviews, 2012, 64: 676-705.
[14]王永昌,赵延瑞,朱玉涛,等. 金属表面等离子振荡[J]. 大学物理, 2005, 25(11): 1-4. (Wang Yongchang, Zhao Yanrui, Zhu Yutao, et al. Metal Surface Plasma Oscillation [J]. College Physics, 2005, 25(11): 1-4).
[15]Meinke M, Muller G, Helfmann J,et al. Optical Properties of Platelets and Blood Plasma and Their Influence on the Optical Behavior of Whole Blood in the Visible to Near Infrared Wavelength Range [J]. Journal of Biomedical Optics, 2007, 12(1): 014024-1-014024-9
[16]Bosschaart N, Edelman G J. A Literature Review and Novel Theoretical Approach on the Optical Properties of Whole Blood [J]. Lasers in Medical Science, 2014, 29(2): 453-479.
[17]Faber D J,Aalders M C,Mik E G,et al. Oxygen Saturation-Dependent Absorption and Scattering of Blood [J]. Physical Review Letters, 2004, 93(2): 028102-1-028102-4
[18]Chen Z, Dai Z, Chen N,et al. Gold Nanoparticles-Modified Tapered Fiber Nanoprobe for Remote SERS Detection [J]. IEEE Photonics Technology Letters, 2014, 26(8): 777-780.
[19]Kelly K L, Eduardo C, Zhao L L,et al. The Optical Properties of Metal Nanoparticles:□ The Influence of Size, Shape, and Dielectric Environment [J]. The Journal of Physical Chemistry B, 2003, 107(3): 668-677.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(61575120)
{{custom_fund}}