本文采用自组装纳米球热压印技术,在旋涂有聚丙烯酸(PAA)薄膜、聚苯乙烯(PS)薄膜的基底上,旋涂SiO2纳米球溶液,通过自组装形成纳米球三维密排结构,接着进行热熔-沉陷处理,在PS薄膜形成周期性、六角密堆积纳米碗状阵列,接着利用PAA的水解特性去除PAA薄膜,将PS薄膜翻转并移至硅片基底上,通过氧离子刻蚀,得到纳米孔阵列掩模,最后结合电子束蒸发镀Al,制备出大面积、周期性的Al纳米盘阵列。同时也研究了三层膜结构的均匀性对制备大面积、周期性纳米盘阵列的重要性。基于自组装压印技术制备圆盘阵列的研究比传统纳米制作技术操作更简单、效率高、成本低;同时在新光学元件的基础研究、太阳能光伏设备方面具有潜在应用。
Abstract
In this paper, self-assembled nanosphere hot stamping technology is used to spin-coat SiO2 nanosphere solution on a substrate coated with polyacrylic acid (PAA) film and polystyrene (PS) film to form a three-dimensional close-packed nanosphere structure by self-assembly. Next, a hot melt-sinking process is performed to form a periodic, hexagonal close-packed nano-bowl array on the PS film, and then the PAA film is removed using the hydrolysis characteristics of the PAA, and the PS film is turned over and moved to the silicon wafer substrate. The PS film is etched by oxygen Etching to obtain a nanohole array mask, and finally, a large-area, periodic Al nano-disk array is prepared by combining the electron beam evaporation with Al plating. At the same time, the importance of the uniformity of three-layer membrane structure to the preparation of large-area and periodic nano-disk array was also studied. The preparation of disk array based on self-assembly embossing technology is simpler, more efficient and lower cost than traditional nanometer fabrication technology. At the same time, it has potential applications in basic research of new optical elements and solar photovoltaic equipment.
关键词
自组装 /
旋涂 /
热熔沉陷 /
孔阵列掩模 /
盘阵列
{{custom_keyword}} /
Key words
Self-assembly /
Spin coating /
hot melt-sinking /
hole array mask /
disk array
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Chen Y, Anne Pépin. Nanofabrication: Conventional and Nonconventional Methods [J]. Electrophoresis, 2001, 22(2): 187-207.
[2]Haynes C L, Van Duyne R P. Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics [J]. Journal of Physical Chemistry B, 2001, 105(24): 5599-5611.
[3]Hulteen J C, Treichel D A, Smith M T, et al. Nanosphere Lithography: Size-Tunable Silver Nanoparticle and Surface Cluster Arrays [J]. The Journal of Physical Chemistry B, 1999, 103(19): 3854-3863.
[4]Pacifico J, Gómez D, Mulvaney P. A Simple Route to Tunable Two- Dimensional Arrays of Quantum Dots [J]. Advanced Materials, 2005, 17(4): 415-418.
[5]Tan J Y, Sow C H, Lim K Y, et al. Fabrication of a Two-Dimensional Periodic Non-Close-Packed Array of Polystyrene Particles [J]. The Journal of Physical Chemistry B, 2004, 108(48): 18575-18579.
[6]Yang S M, Jang S G, Choi D G,et al. Nanomachining by Colloidal Lithography [J]. Small (Weinheim an der Bergstrasse, Germany), 2006, 2(4): 458-475.
[7]Jin C, Mclachlan M A, Mccomb D W,et al. Template-Assisted Growth of Nominally Cubic(100)-Oriented Three-Dimensional Crack-Free Photonic Crystals [J]. Nano Letters, 2005, 5(12): 2646-2650.
[8]Rybczynski J, Ebels U, Giersig M. Large-Scale, 2D Arrays of Magnetic Nanoparticles [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 219(1-3): 1-6.
[9]Chou S Y. Krauss P R. Renstrom P J. Nanoimprint Lithography [J]. Journal of Vacuum Science & Technology B, 1996, 14(6): 4129-4133.
[10]Zhang G, Wang D. Colloidal Lithography-The Art of Nanochemical Patterning [J]. Chemistry, an Asian journal, 2009, 4(2): 236-245.
[11]Zhang J, Li Y, Zhang X,et al. Colloidal Self-Assembly Meets Nanofabrication: From Two-Dimensional Colloidal Crystals to Nanostructure Arrays [J]. Advanced Materials, 2010, 22(38): 4249-4269.
[12]Li Y, Koshizaki N, Cai W. PeriodicOne-Dimensional Nanostructured Arrays based on Colloidal Templates, Applications, and Devices[J]. Coordination Chemistry Reviews, 2011, 255(3-4): 357-373.
[13]Yang S, Lei Y. RecentProgress on Surface Pattern Fabrications based on Monolayer Colloidal Crystal Templates and Related Applications [J]. Nanoscale, 2011, 3(7): 2768-2782.
[14]Zhang G, Wang D,Mohwald H. Fabrication of Multiplex Quasi-Three- Dimensional Grids of One-Dimensional Nanostructures via Stepwise Colloidal Lithography [J]. Nano Letters, 2007, 7(11): 3410-3413.
[15]Chen H L, Chuang S Y, Lin C H, et al. Using Colloidal Lithography to Fabricate and Optimize Sub-Wavelength Pyramidal and Honeycomb Structures in Solar Cells [J]. Optics Express, 2007, 15(22): 14793-14803.
[16]Cheung C L, Nikolic R J, Reinhardt C E, et al. Fabrication of Nanopillars by Nanosphere Lithography [J]. Nanotechnology, 2006, 17(5): 1339-1343.
[17]魏玉平,丁玉成,李长河. 纳米压印光刻技术综述[J].制造技术与机床,2012(8): 87-94 (Wei Yuping, Ding Yucheng, Li Changhe. Overview of Nano-imprint Lithography Technology [J]. Manufacturing Technology and Machine Tools, 2012(8): 87-94 ).
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
广东省自然科学基金资助项目(2015A030311018; 2017A030313035)
{{custom_fund}}