氧化铟锡纳米阵列中的协同增强拉曼散射现象研究

司丽芳, 范兴策, 侯翔宇, 李国群, 龙开琳, 罗小光, 倪振华, 邱腾

PDF(1404 KB)
光散射学报 ›› 2021, Vol. 33 ›› Issue (1) : 32-39. DOI: 10.13883/j.issn1004-5929.202101004
表面增强拉曼散射技术

氧化铟锡纳米阵列中的协同增强拉曼散射现象研究

  • 司丽芳1, 范兴策1*, 侯翔宇1, 李国群1, 龙开琳1,3, 罗小光1,2, 倪振华1, 邱腾1
作者信息 +

Assembly of Indium Tin Oxide Nanoarrays for Synergistically Enhanced Raman Scattering

  • SI Lifang1, FAN Xingce1*, HOU Xiangyu1, LI Guoqun1, LONG Kailin1,3, LUO Xiaoguang1,2, NI Zhenhua1, QIU Teng1
Author information +
History +

摘要

一些具有表面增强拉曼散射(Surface-enhanced Raman Scattering, SERS)性能的金属氧化物材料近年来被广泛研究,它们具有相较于传统贵金属材料更为优异的信号均匀度、材料稳定性和生物兼容性等。目前金属氧化物SERS的研究瓶颈在于拉曼增强效果一般,需要对其检测灵敏度进行有效提升方可实现日后的广泛应用。因为金属氧化物具有若干种区别于贵金属的材料特征,例如带隙、化学计量比、激子等多个维度的材料特性,所以金属氧化物可以通过调控若干种材料性能以达到协同增强拉曼散射的目的。本文选取氧化铟锡(Indium Tin Oxide, ITO)作为示例来研究重掺杂金属氧化物纳米阵列中的协同增强拉曼散射现象。该体系同时集成了重掺杂半导体材料的SERS性能以及光学干涉腔的特征,协同性地实现了ITO纳米阵列的SERS性能提升。该研究为金属氧化物SERS基底的研究提供了一个很好的案例,在对金属氧化物SERS材料性能进行提升时,需要对金属氧化物中可能产生的干涉现象进行有效利用。

Abstract

Some metal oxides possessing surface-enhanced Raman scattering (SERS) ability have drawn tremendous attention recently for their good signal uniformity, chemical stability and biocompatibility. However, most of them present deficient Raman enhancement factors which cannot meet the rigorous requirement in SERS applications. It is desirable to develop efficient approaches to promote the SERS performance. The different inherent features of metal oxides compared with noble metals, endow the former abundant possibilities to tailor SERS performance, such as tailoring of bandgap, stoichiometry or excitons. The effective tailoring of several inherent properties of metal oxides simultaneously may contribute synergistically to the overall SERS performance. Therefore, we choose indium tin oxide (ITO) as an example to explore the possibility to integrate its inherent SERS-activity with its optical interference cavity, to further promote the SERS performance. This work demonstrates a synergistical approach to engineer the SERS-active metal oxide substrate, providing a general concept to manage the intrinsic SERS ability of metal oxide together with optical interference effect.

关键词

氧化铟锡纳米阵列 / 表面增强拉曼散射 / 光致电荷转移共振 / 干涉

Key words

indium tin oxide nanoarrays / surface-enhanced Raman scattering / photoinduced charge transfer resonance / interference

引用本文

导出引用
司丽芳, 范兴策, 侯翔宇, 李国群, 龙开琳, 罗小光, 倪振华, 邱腾. 氧化铟锡纳米阵列中的协同增强拉曼散射现象研究. 光散射学报. 2021, 33(1): 32-39 https://doi.org/10.13883/j.issn1004-5929.202101004
SI Lifang, FAN Xingce, HOU Xiangyu, LI Guoqun, LONG Kailin, LUO Xiaoguang, NI Zhenhua, QIU Teng. Assembly of Indium Tin Oxide Nanoarrays for Synergistically Enhanced Raman Scattering. Chinese Journal of Light Scattering. 2021, 33(1): 32-39 https://doi.org/10.13883/j.issn1004-5929.202101004

参考文献

[1]Ding S Y, Yi J, Li J F et al. Nanostructure-Based Plasmon-Enhanced Raman Spectroscopy for Surface Analysis of Materials [J]. Nat. Rev. Mater., 2016, 1:16021.
[2]Fleischmann M, Hendra P J, McQuillan A J Raman Spectra of Pyridine Adsorbed at a Silver Electrode [J]. Chem. Phys. Lett., 1974, 26: 163-166.
[3]Hutter E, Fendler J H Exploitation of Localized Surface Plasmon Resonance [J]. Adv. Mater., 2004, 16: 1685-1706.
[4]Fan X, Hao Q, Qiu T et al. Improving the Performance of Light-Emitting Diodes Via Plasmonic-Based Strategies [J]. J. Appl. Phys., 2020, 127: 040901.
[5]Lin J, Shang Y, Li X et al. Ultrasensitive SERS Detection by Defect Engineering on Single Cu2O Superstructure Particle [J]. Adv. Mater., 2017, 29: 1604797.
[6]Wang X, Shi W, Wang S et al. Two-Dimensional Amorphous TiO2 Nanosheets Enabling High-Efficiency Photoinduced Charge Transfer for Excellent SERS Activity [J]. J. Am. Chem. Soc., 2019, 141:5856-5862.
[7]Wu H, Zhou X, Li J et al. Ultrathin Molybdenum Dioxide Nanosheets as Uniform and Reusable Surface-Enhanced Raman Spectroscopy Substrates with High Sensitivity [J]. Small, 2018, 14: 1802276.
[8]Zhang Q, Li X, Ma Q et al. A Metallic Molybdenum Dioxide with High Stability for Surface Enhanced Raman Spectroscopy [J]. Nat. Commun., 2017, 8: 14903.
[9]Yang L, Jiang X, Ruan W et al. Observation of Enhanced Raman Scattering for Molecules Adsorbed on TiO2 Nanoparticles: Charge-Transfer Contribution [J]. J. Phys. Chem. C, 2008, 112: 20095-20098.
[10]Xue X, Ji W, Mao Z et al. Raman Investigation of Nanosized TiO2: Effect of Crystallite Size and Quantum Confinement [J]. J. Phys. Chem. C, 2012, 116: 8792-8797.
[11]Han X X, Ji W, Zhao B et al. Semiconductor-Enhanced Raman Scattering: Active Nanomaterials and Applications [J]. Nanoscale, 2017, 9: 4847-4861.
[12]Alessandri I, Lombardi J R Enhanced Raman Scattering with Dielectrics [J]. Chem. Rev., 2016, 116: 14921-14981.
[13]Cong S, Yuan Y, Chen Z et al. Noble Metal-Comparable SERS Enhancement from Semiconducting Metal Oxides by Making Oxygen Vacancies [J]. Nat. Commun., 2015, 6: 7800.
[14]Fan X, Li M, Hao Q et al. High SERS Sensitivity Enabled by Synergistically Enhanced Photoinduced Charge Transfer in Amorphous Nonstoichiometric Semiconducting Films [J]. Adv. Mater. Interfaces, 2019, 6: 1901133.
[15]Hou X, Fan X, Wei P et al. Planar Transition Metal Oxides SERS Chips: A General Strategy [J]. J. Mater. Chem. C, 2019, 7: 11134-11141.
[16]Li M, Fan X, Gao Y et al. W18O49/Monolayer MoS2 Heterojunction-Enhanced Raman Scattering [J]. J. Phys. Chem. Lett., 2019, 10: 4038-4044.
[17]Lan L, Hou X, Gao Y et al. Inkjet-Printed Paper-Based Semiconducting Substrates for Surface-Enhanced Raman Spectroscopy [J]. Nanotechnology, 2019, 31: 055502.
[18]Yang L, Peng Y, Yang Y et al. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect [J]. Adv. Sci., 2019, 6: 1900310.
[19]Liu W, Bai H, Li X et al. Improved Surface-Enhanced Raman Spectroscopy Sensitivity on Metallic Tungsten Oxide by the Synergistic Effect of Surface Plasmon Resonance Coupling and Charge Transfer [J]. J. Phys. Chem. Lett., 2018, 9: 4096-4100.
[20]Schlatmann A R, Floet D W, Hilberer A et al. Indium Contamination from the Indium-Tin-Oxide Electrode in Polymer Light-Emitting Diodes [J]. Appl. Phys. Lett., 1996, 69: 1764-1766.
[21]Hao Q, Wang C, Huang H et al. Aluminum Plasmonic Photocatalysis [J]. Sci. Rep., 2015, 5: 15288.
[22]Fan X, Hao Q, Jin R et al. Assembly of Gold Nanoparticles into Aluminum Nanobowl Array [J]. Sci. Rep., 2017, 7: 2322.
[23]Fan X, Hao Q, Li M et al. Hotspots on the Move: Active Molecular Enrichment by Hierarchically Structured Micromotors for Ultrasensitive SERS Sensing [J]. ACS Appl. Mater. Interfaces, 2020, 12: 28783-28791.
[24]Yang Y, Qiu T, Kong F et al. Interference Effects on Indium Tin Oxide Enhanced Raman Scattering [J]. J. Appl. Phys., 2012, 111: 033110.
[25]Yang Y, Qiu T, Liu Z et al. Surface and Interference Co-enhanced Raman Scattering from Indium Tin Oxide Nanocap Arrays [J]. Appl. Surf. Sci., 2013, 280: 343-348.
[26]Hildebrandt P, Stockburger M Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine 6g Adsorbed on Colloidal Silver [J]. J. Phys. Chem., 1984, 88: 5935-5944.
[27]Lounis S D, Runnerstrom E L, Bergerud A et al. Influence of Dopant Distribution on the Plasmonic Properties of Indium Tin Oxide Nanocrystals [J]. J. Am. Chem. Soc., 2014, 136: 7110-7116.
[28]Li S Q, Guo P, Zhang L et al. Infrared Plasmonics with Indium-Tin-Oxide Nanorod Arrays [J]. ACS Nano, 2011, 5: 9161-9170.
[29]Lombardi J R, Birke R L A Unified Approach to Surface-enhanced Raman Spectroscopy [J]. J. Phys. Chem. C, 2008, 112: 5605-5617.
[30]Lombardi J R, Birke R L Theory of Surface-enhanced Raman Scattering in Semiconductors [J]. J. Phys. Chem. C, 2014, 118: 11120-11130.

基金

国家自然科学基金(批准号:11874108)资助的课题
PDF(1404 KB)

814

Accesses

0

Citation

Detail

段落导航
相关文章

/