Au@SiO2核-壳层单晶八面体纳米棒光吸收性质的研究

伊兆广, 吴庆春, 汪连城, 金远伟, 许生慧, 刘津升

PDF(835 KB)
光散射学报 ›› 2021, Vol. 33 ›› Issue (1) : 59-64. DOI: 10.13883/j.issn1004-5929.202101008
光散射理论

Au@SiO2核-壳层单晶八面体纳米棒光吸收性质的研究

  • 伊兆广, 吴庆春, 汪连城, 金远伟, 许生慧, 刘津升*
作者信息 +

The Research on Optical Absorption Properties of Au@SiO2 Core-Shell Single Crystal Octahedron Nanorod

  • YI Zhaoguang, WU Qingchun, WANG Liancheng, JIN Yuanwei, XU Shenghui, LIU Jinsheng*
Author information +
History +

摘要

包覆材料改变了单一材料的力学、光学性质。利用离散偶极近似(Discrete Dipole Approximation, 简称 DDA)的方法,系统研究二氧化硅壳层、尺寸及形貌等因素对Au@SiO2核-壳层单晶八面体纳米棒光学吸收谱峰值、峰位及其近场分布的影响。研究表明SiO2壳层包覆的Au纳米棒的光学吸收谱同样表现为横向和纵向吸收峰。随着SiO2壳层厚度增加,Au@SiO2核-壳层单晶八面体纳米棒横向和纵向吸收缝的强度明显减弱,横向吸收峰的位置发生微小的蓝移,而纵向吸收峰位发生明显的红移。SiO2壳层在提高纳米棒硬度的同时,改变光学吸收峰的峰值和峰位,削弱了Au核表面等离子体共振强度(Surface Plasma Resonance-SPR)。

Abstract

The coating material changes the mechanical and optical properties of a single material. Using the Discrete Dipole Approximation (DDA) method, the influence of SiO2shell material, size and morphology on peak value, peak location and near-field distribution of optical absorption spectrum of Au@SiO2 core-shell single crystal octahedron nanorod is systematically studied. The results show that the optical absorption spectrum of Au nanorod coated with SiO2 shell also shows transverse and longitudinal absorption peak. With the increase of SiO2 shell thickness, the intensity of the Au@SiO2 core-shell single crystal octahedron nanorod's transverse and longitudinal absorption peak decreases significantly, the position of the transverse absorption peak is slightly blue shifted, however the longitudinal absorption peak location is significantly red shifted. The SiO2 shell can improve the hardness of the nanorod and change the peak value and position of optical absorption peak, which weakens the surface plasmon resonance intensity of Au core.

关键词

Au@SiO2核-壳层单晶八面体纳米棒 / 光学吸收谱 / DDA

Key words

Au@SiO2 core-shell single crystal octahedron nanorod / optical absorption spectrum / DDA

引用本文

导出引用
伊兆广, 吴庆春, 汪连城, 金远伟, 许生慧, 刘津升. Au@SiO2核-壳层单晶八面体纳米棒光吸收性质的研究. 光散射学报. 2021, 33(1): 59-64 https://doi.org/10.13883/j.issn1004-5929.202101008
YI Zhaoguang, WU Qingchun, WANG Liancheng, JIN Yuanwei, XU Shenghui, LIU Jinsheng. The Research on Optical Absorption Properties of Au@SiO2 Core-Shell Single Crystal Octahedron Nanorod. Chinese Journal of Light Scattering. 2021, 33(1): 59-64 https://doi.org/10.13883/j.issn1004-5929.202101008

参考文献

[1]Dhakshinamoorthy A, Asiri A M, Garcia H. Metal Organic Frameworks as Versatile Hosts of Au Nanoparticles in Heterogeneous Catalysis[J]. ACS Catalysis, 2017, 7(4): 2896-2919.
[2]Torrisi L, Restuccia N. Laser-Generated Au Nanoparticles for Bio-Medical Applications[J]. IRBM, 2018, 39(5): 307-312.
[3]Skrabalak S E, Chen J Y, Sun Y G, et al. Gold nanocages: synthesis, properties, and applications. Accounts of Chemical Research[J]. 2008, 41(12): 1587-1595.
[4]Dai Q F, Ouyang M, Yuan W G, et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory[J]. Advanced Materials, 2017, 29(35): 1701918.
[5]伊兆广, 刘津升. Au@Ag核-壳层纳米结构光学性质的研究[J]. 光散射学报, 2018, 30(3): 197-202. (Yi Zhaoguang, Liu Jinsheng. The Research on Optical Properties of Au@Ag Core-Shell Nanostructure. The Journal of Light Scattering[J], 2018, 30(3): 197-202)
[6]Nivedhini Iswarya C, Kiruba Daniel S C G, Sivakumar M. Studies on l-histidine capped Ag and Au nanoparticles for dopamine detection[J]. Mater Sci Eng C Mater Biol Appl, 2017, 75: 393-401.
[7]Chen M, Tang S H, Guo Z D, et al. Core-Shell Pd@Au Nanoplates as Theranostic Agents for In-Vivo Photoacoustic Imaging, CT Imaging, and Photothermal Therapy[J]. Advanced Materials, 2014, 26(48): 8210-8216.
[8]Jain P K, Huang X H, El-Sayed I H, et al.Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Accounts of Chemical Research[J], 2008, 41(12): 1578-1586.
[9]Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Advanced Materials, 2001, 13(18): 1389-1393.
[10]Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires[J]. Advanced Materials, 2002, 14(1): 80-82.
[11]黄运欢, 李璞. 金纳米棒复合体的消光特性[J]. 物理学报, 2015, 64(20): 207301. (Huang Yunhuan, Li Pu. Extinction properties of gold nanorod complexes[J]. Acta Physica Sinica, 2015, 64(20): 207301)
[12]李玉玲, 阚彩侠, 王长顺, 等. 纳米棒组装体表面等离子体共振耦合效应的FDTD模拟[J]. 物理化学学报, 2014, 30(10), 1827-1836. (Li Yuling, Kan Caixia, Wang Changshun, et al. Surface Plasmon Resonance Coupling Effect of Assembled Gold Nanorods Based on the FDTD Simulation[J]. Acta Phys Chim Sin, 2014, 30 (10), 1827-1836)
[13]Liu J, Kan C, Cong B, et al. Plasmonic property and stability of core-shell Au@SiO2 nanostructures[J]. Plasmonics, 2014, 9(5): 1007-1014.
[14]Duchene J S, Almeida R P, Wei W D. Facile synthesis of anisotropic Au@SiO2 core-shell nanostructures[J]. Dalton Transactions, 2012, 41(26): 7879-7882.
[15]Mie G. Beigrade zur optik truber medien, speziell kolloidaler metallo-sungen[J]. Ann Phys, 1908, 25: 377-445.
[16]Oskooi A F, Roundy D, Ibanescu, M, et al. Meep: A flexible free-software package for electromagnetic simulations by the FDTD method[J]. Computer Physics Communications, 2010, 181(3): 687-702.
[17]Draine B T, Flatau P J. Discrete-dipole approximation for scattering calculations[J]. J Opt Soc Am A, 1994, 11(4), 1491-1499.
[18]葛余俊, 赤骋, 伍蓉, 等. 基于金纳米棒的核壳纳米结构及其光学性质研究[J]. 化学进展, 2012, 24(5): 776-783. (Ge Yujun, Chi Cheng, Wu Rong, et al. Gold Nanorods-Based Core-Shell Nanostructures: Synthesis, Characterization and Optical Properties[J]. Progress In Chemistry, 2012, 24(5): 776-783)
[19]Flatau P J, Draine B T. Fast near-field calculations in the discrete dipole approximation for regular rectilinear grids[J]. Optics Express, 2012(2), 20, 1247-1252.
[20] Draine B T. The discrete-dipole approximation and its application to interstellar graphite grains[J]. Astrophys J, 1988, 333(2), 848-872.

基金

南京工程学院校级科研基金项目(QKJ201908和QKJ201907),江苏省教育厅自然科学研究项目(BK20160772)
PDF(835 KB)

424

Accesses

0

Citation

Detail

段落导航
相关文章

/