Au-Ag合金纳米球壳的折射率传感特性分析与优化

武盼盼, 帕尔哈提江·吐尔孙, 郑玉霞, 热米莱·阿卜来提

PDF(1178 KB)
光散射学报 ›› 2021, Vol. 33 ›› Issue (1) : 72-78. DOI: 10.13883/j.issn1004-5929.202101010
光散射理论

Au-Ag合金纳米球壳的折射率传感特性分析与优化

  • 武盼盼1,2, 帕尔哈提江·吐尔孙1,2*, 郑玉霞1,2, 热米莱·阿卜来提1,2
作者信息 +

Analysis and Optimization of Refractive Index Sensing of Au-Ag Nanoshell

  • WU Panpan1,2, TUERSUN Paerhatijiang1,2*, ZHENG Yuxia1,2, ABULAITI Remilai1,2
Author information +
History +

摘要

基于Au纳米颗粒的稳定性、无毒性、生物相容性和Ag纳米颗粒优异的消光特性,Au-Ag合金纳米颗粒在生物传感中存在着潜在的应用价值。为了能找到传感性能更好的合金纳米颗粒,本文利用双层球Mie散射理论和介电函数尺寸修正模型定量研究了Au-Ag合金纳米球壳的尺寸参数对折射率灵敏度、半峰宽和品质因子的影响,获得了最佳品质因子和对应的优化尺寸。同时,本文研究了Au摩尔分数对最佳品质因子和优化尺寸的影响。结果发现,当Au摩尔分数x为0.5时,Au-Ag@SiO2(Au-Ag@Vacuum)合金纳米球壳的最大品质因子为2.09(2.20),对应的内核半径和外壳厚度分别为22.3 nm(23.6 nm)和8.7 nm(6.9 nm)。当Au摩尔分数小于0.25时,Au-Ag合金纳米球壳的品质因子优于Au纳米球壳。随着Au摩尔分数的减小,品质因子增大,甚至是Au纳米球壳的2~3倍。此研究为Au-Ag合金纳米球壳在生物传感领域中的有效应用提供了理论指导。

Abstract

Based on the stability, nontoxicity, and biocompatibility of Au nanoparticles and excellent extinction properties of Ag nanoparticles, bimetallic alloy nanoparticles have potential value for applications in biosensors. In order to find alloy nanoparticles with better sensing properties, the effects of the size of Au-Ag nanoshell on Refractive Index Sensitivity, Full Width at Half Maximum, and Figure of Merit were quantitatively studied, by adopting Mie scattering theory of sphere with a concentric spherical shell and the size correction model of the dielectric function. Thus the optimal Figure of Merit and the corresponding size were obtained.Meanwhile, this article studied the effect of Au molar fraction on the optimum Figure of Merit and size was studied. The results show that when Au molar fraction x is fixed at 0.5, the Figure of Merit of Au-Ag@SiO2 nanoshell reaches its maximum value (2.09) and the corresponding core radius and shell thickness are 22.3 nm and 8.7 nm, respectively. The Figure of Merit of Au-Ag@Vacuum nanoshell reaches its maximum value (2.20) and the corresponding core radius and shell thickness are 23.6 nm and 6.9 nm, respectively. When the Au molar fraction is less than 0.25, the Figure of Merit of Au-Ag nanoshell is better than that of Au nanoshell. With the decrease of the Au molar fraction, the Figure of Merit increases to at most 2-3 times of the Au nanoshell. This study provides theoretical guidance for the effective application of Au-Ag nanoshell in the field of biosensors.

关键词

Au-Ag合金纳米球壳 / Mie理论 / 传感 / 品质因子 / 局域表面等离激元共振

Key words

Au-Ag nanoshell / Mie theory / Sensing / Figure of Merit / Localized Surface Plasmon Resonance

引用本文

导出引用
武盼盼, 帕尔哈提江·吐尔孙, 郑玉霞, 热米莱·阿卜来提. Au-Ag合金纳米球壳的折射率传感特性分析与优化. 光散射学报. 2021, 33(1): 72-78 https://doi.org/10.13883/j.issn1004-5929.202101010
WU Panpan, TUERSUN Paerhatijiang, ZHENG Yuxia, ABULAITI Remilai. Analysis and Optimization of Refractive Index Sensing of Au-Ag Nanoshell. Chinese Journal of Light Scattering. 2021, 33(1): 72-78 https://doi.org/10.13883/j.issn1004-5929.202101010

参考文献

[1]Kubelick K P, Emelianov S Y. Prussian blue nanocubes as a multimodal contrast agent for image-guided stem cell therapy of the spinal cord[J]. Photoacoustics, 2020, 18:100166-9.
[2]Wang Jinping, Sun Jingyu, Hu Wei, et al. A porous Au@Rh bimetallic core-shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy[J]. Adv Mater, 2020, 32 (22):2001862-14.
[3]Kaya S I, Kurbanoglu S, Ozkan S A. Nanomaterials-based nanosensors for the simultaneous electrochemical determination of biologically important compounds: ascorbic acid, uric acid, and dopamine[J]. Crit Rev Anal Chem, 2019, 49(2):101-125.
[4]Mrinmoy M, Narendra S, Raju K G. Enhanced visible-light-driven photocatalytic activity of Au@Ag core-shell bimetallic nanoparticles immobilized on electrospun TiO2 nanofibers for degradation of organic compounds[J]. Catal Sci technol, 2017, 7(3):570-580.
[5]Guler U, Turan R. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles[J]. Opt Express, 2010, 18(16):17322-17338.
[6]Jackson P, Periasamy S, Bansal V, et al. Evaluation of the effects of gold nanoparticle shape and size on contrast enhancement in radiological imaging[J]. Australas Phys Eng S, 2011, 34(2):243-249.
[7]Sherry L J, Chang S H, Schatz G C, et al. Localized surface plasmon resonance spectroscopy of single silver nanocubes[J]. Nano Lett, 2005, 5(10):2034-2038.
[8]Fathi F, Rashidi M, Omidi Y, et al. Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors[J]. Talanta, 2019, 192:118-127.
[9]Li T T, Shen Y B, Zhong X X, et al. Effect of noble metal element on microstructure and NO2 sensing properties of WO3 nanoplates prepared from a low-grade scheelite concentrate[J]. J Alloy Compd, 2020, 818(25):152927-58.
[10]Tuersun P E H T J, Taximaiti Y S F, Adili Y M T, et al. Refractive index sensitivity analysis of gold nanoparticles[J] Optik, 2017, 149:384-390.
[11]夏伊丁·亚库普, 帕尔哈提江·吐尔孙, 武盼盼. 金纳米旋转椭球的折射率传感特性分析与优化[J]. 光散射学报, 2020, 32(1):40-45. (YAKUPU Xiayiding, TUERSUN Paerhatijiang, WU Panpan. Analysis and optimization of refractive index sensing of gold nanospheroid[J]. J Light Scattering, 2020, 32(1):40-45.)
[12]Ni Yuan, Kan Caixia, He Longbing, et al. Alloyed Au-Ag nanorods with desired plasmonic properties and stability in harsh environments[J]. Photonics Res, 2019, 7(5):558-565.
[13]Kvitek O, Havelka V, Vesely M, et al. Preparation of alloyed and "core-shell" Au/Ag bimetallic nanostructures on glass substrate by solid state dewetting[J]. J Alloy Compd, 2020, 829:154627-8.
[14]Aden A.L, Kerker M. Scattering of electromagnetic waves from two concentric spheres[J]. J Appl Phys, 1951, 22:1242-1246.
[15]Bohren C F, Huffman D R. Absorption and scattering of light by small particles[M], New York, John Wiely & Sons, 1983:83-129.
[16]Link S, Wang Z L, El-sayed M A. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition[J]. J Phys Chem B, 1999, 103:3529-3533.
[17]Rioux D, Vallieres S, Besner S, et al. An analytic model for the dielectric function of Au, Ag, and their alloys[J]. Adv Opt Mater, 2014, 2:176-182.
[18]Kreibig U, Vollmer M. Optical properties of metal clusters[M]. New York, Springer, 1995.

基金

国家自然科学基金项目(11764042),新疆维吾尔自治区“百名青年博士引进计划”项目
PDF(1178 KB)

303

Accesses

0

Citation

Detail

段落导航
相关文章

/