低维有机-无机杂化钙钛矿材料由于其独特的光电性能而受到广泛关注。本文利用金刚石对顶砧装置对不同尺寸的CH3NH3PbI3(MAPbI3)纳米立方块进行了高压研究。并探索了尺寸效应对MAPbI3纳米立方块在高压下的光学性能的影响规律。高压原位紫外-可见吸收和荧光光谱结果显示,两种不同尺寸的MAPbI3纳米立方块的带隙和光学性能出现了不同的变化规律。其中,小尺寸MAPbI3纳米立方块,在0.25 GPa以下,带隙随着压力的增加一直减小,而对于大尺寸纳米立方块的带隙,在0.67 GPa以下,随着压力的增加持续增加。原位高压拉曼的测量和分析表明,尺寸效应与八面体[PbI6]4-和有机阳离子CH3NH3+间的相互作用有关。我们的研究结果为深入了解低维有机-无机杂化钙钛矿纳米晶的带隙调控和光学特性以及结构稳定性提供了研究依据,为提高有机-无机杂化钙钛矿电池的转化效率开辟了一种研究思路。
Abstract
Low-dimensional organic-inorganic hybrid perovskite materials have attracted extensive attention due to their exotic photoelectric performance. In this paper, different size (CH3NH3PbI3) MAPbI3 nanocubes were studied by using diamond anvil cell (DAC), under high-pressure conditions. And explored the regulation of the size effect on the the optical properties of MAPbI3 nanocubes under high pressure. The in-situ high-pressure UV-visible absorption and photoluminescence spectra showed that the band gap and optical properties of MAPbI3 nanocubes with two different sizes showed different changes. The band gap of small-sized MAPbI3 nanocubes decreases with the increase of pressure below 0.25 GPa, while for large-sized nanocubes, the band gap continues to increased with the increasing of pressure below 0.67 GPa. The in-situ high pressure Raman measurement and analysis showed that the size effect was related to the interaction between the octahedron [PbI6]4- and the organic cation CH3NH3+. The results provide a research basis for in-depth understanding the band gap regulation, optical properties and structural stability of low dimensional organic-inorganic hybrid perovskite nanocrystals, and it provides a research idea for improving the conversion efficiency of organic-inorganic hybrid perovskite cells.
关键词
低维钙钛矿 /
MAPbI3 /
高压拉曼 /
带隙
{{custom_keyword}} /
Key words
Low-dimensional perovskite /
MAPbI3 /
High pressure Raman /
Band gap
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237.
[2]Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542-546.
[3]Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
[4]Laboratory NRE (2020) Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html
[5]Sichert J A, Tong Y, Mutz N, et al. Quantum size effect in organometal halide perovskite nanoplatelets[J]. Nano letters, 2015, 15(10): 6521-6527.
[6]Hintermayr V A, Richter A F, Ehrat F, et al. Tuning the Optical Properties of Perovskite Nanoplatelets through Composition and Thickness by Ligand-Assisted Exfoliation[J]. Advanced materials, 2016, 28(43): 9478-9485.
[7]Manser J S, Christians J A, Kamat P V, et al. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 2016, 116, 12956-13008.
[8]Zhang Z, Zhao X, Wang T, et al. Research Progress of Solar Cells Based on Organic-Inorganic Hybrid Perovskites Methylamine Lead Halide[J]. Energy and Environment Focus, 2014, 3(4): 354-359.
[9]Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647.
[10]Kong L, Liu G, Gong J, et al. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites[J]. Proceedings of the National Academy of Sciences, 2016, 113(32): 8910-8915
[11]Jaffe A, Lin Y, Beavers C M, et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties[J]. ACS central science, 2016, 2(4): 201-209
[12]Wang K, Liu R, Qiao Y, et al. Pressure-induced reversible phase transition and amorphization of CH3NH3PbI3[J]. arXiv preprint arXiv:1509.03717, 2015.
[13]Jiang S J, Fang Y N, Li R P, et al. Pressure‐Dependent Polymorphism and Band‐Gap Tuning of Methylammonium Lead Iodide Perovskite[J]. Angew. Chem. Int. Ed. Volume, 2016, 128 (22): 6650-6654.
[14]Yun W S, Han S W, Hong S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M= Mo, W; X= S, Se, Te)[J]. Physical Review B, 2012, 85(3): 033305.
[15]Mao H K, Bell P M, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar[J]. J. Appl. Phys. 1978, 49(6):3276-3283.
[16]Tauc J, Grigorovici R, Vancu A, et al. Optical properties and electronic structure of amorphous germanium[J]. physica status solidi (b), 1966, 15(2): 627-637.
[17]Capitani F, Marini C, Caramazza S, et al. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite[J]. Journal of Applied Physics, 2016, 119(18): 185901.
[18]Pérez-Osorio M A, Milot R L, Filip M R, et al. Vibrational properties of the organic-inorganic halide perovskite CH3NH3PbI3 from theory and experiment: factor group analysis, first-principles calculations, and low-temperature infrared spectra[J]. The Journal of Physical Chemistry C, 2015, 119(46): 25703-25718.
[19]Stranks S D, Burlakov V M, Leijtens T, et al. Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States[J]. Physical review applied, 2014, 2(3).
[20]Ma Z, Liu Z, Lu S, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals[J]. Nature Communications, 2018, 9(1): 4506-4506.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(NO.11804079)国家自然科学基金-河南省联合基金(NO.U1604144)资助项目
{{custom_fund}}