远程增强拉曼光谱技术及其应用

赵家炜, 马建乐, 郝锐, 李铃薇, 李永高, 方吉祥

PDF(3330 KB)
光散射学报 ›› 2021, Vol. 33 ›› Issue (2) : 112-128. DOI: 10.13883/j.issn1004-5929.202102002
综述

远程增强拉曼光谱技术及其应用

  • 赵家炜1, 马建乐1, 郝锐1, 李铃薇1, 李永高2, 方吉祥1,*
作者信息 +

Remote enhanced Raman spectroscopy technology and its application

  • ZHAO Jiawei1, MA Jianle1, HAO Rui1, LI Lingwei1, LI Yonggao2, FANG Jixiang1,*
Author information +
History +

摘要

远程痕量检测技术在公共安全、环境监测、军事战争等领域具有重要的应用前景。拉曼光谱作为一种分子散射光谱,具有指纹识别、无损检测等优势,在远程痕量检测中前景广阔。本文综述了远程增强拉曼光谱技术及其应用。首先,从发展历程、关键技术和技术联用等角度综合分析了远程拉曼光谱检测系统;其次,简要介绍了近场增强拉曼光谱的原理及典型增强衬底,并分析了远程增强拉曼光谱技术可能的实现途径;最后,分类介绍了远程增强拉曼光谱技术在众多领域的应用及展望。

Abstract

Remote trace detection technology has important application prospect in many fields, such as public security, environmental monitoring and military war. Raman spectroscopy, as a kind of molecular scattering spectroscopy, has the advantages of fingerprint identification and nondestructive detection, thus has a broad prospect in remote trace detection. Remote enhanced Raman spectroscopy and its applications are reviewed in this paper. First of all, the remote Raman spectroscopy detection technology is comprehensively analyzed from the perspectives of development history, key technologies and technology combination. Then, the principle of near-field enhanced Raman spectroscopy and typical SERS substrates are briefly introduced, and the possible realization approaches of remote enhanced Raman spectroscopy are analyzed. At last, the applications and prospects of remote enhanced Raman spectroscopy are introduced.

关键词

拉曼光谱 / 远程拉曼光谱检测 / 远程增强拉曼光谱 / 远程痕量探测

Key words

Raman spectroscopy / Remote Raman spectroscopy detection / Remote enhanced Raman spectroscopy / Remote trace detection

引用本文

导出引用
赵家炜, 马建乐, 郝锐, 李铃薇, 李永高, 方吉祥. 远程增强拉曼光谱技术及其应用. 光散射学报. 2021, 33(2): 112-128 https://doi.org/10.13883/j.issn1004-5929.202102002
ZHAO Jiawei, MA Jianle, HAO Rui, LI Lingwei, LI Yonggao, FANG Jixiang. Remote enhanced Raman spectroscopy technology and its application. Chinese Journal of Light Scattering. 2021, 33(2): 112-128 https://doi.org/10.13883/j.issn1004-5929.202102002

参考文献

[1]初凤红. 微痕量爆炸物检测技术研究进展[J]. 激光与光电子学进展,2010,47(2):46-52. (CHU Fenghong. Research Progress of Sensors Used in Trace Explosives Detection[J]. Laser & Optoelectronics Progress, 2010,47(2):46-52.)
[2]刘灏,时家明,程立,等. 远距离爆炸物探测技术[J]. 激光与红外,2015,45(07):733-739. (LIU Hao, SHI Jiaming, CHENG Li, et al. Stand-off detection technology of explosives[J]. Laser & Infrared, 2015,45(07):733-739.)
[3]Zhang W, Tang Y, Shi A, et al. Recent developments in spectroscopic techniques for the detection of explosives[J]. Materials, 2018, 11(8):1264-1288.
[4]Skvortsov L A. Laser methods for detecting explosive residues on surfaces of distant objects[J]. Quantum Electron, 2012, 42(1):1-11.
[5]Shreve A P, Cherepy N J, Mathies R A. Effective rejection of fluorescence interference in Raman spectroscopy using a shifted excitation difference technique[J]. Appl Spectrosc, 2016, 46(4):707-711.
[6]Wu M, Ray M, Fung KH, et al. Stand-off detection of chemicals by UV Raman spectroscopy. Appl Spectrosc, 2000, 54(6):800-806.
[7]Sharma S K, Angel S M, Hubble L W, et al. Remote pulsed laser Raman spectroscopy system for mineral analysis on planetary surfaces to 66 meters[J]. Appl Spectrosc, 2002, 56(6):699-705.
[8]Misra A K, Sharma S K, Chio C H, et al. Pulsed remote Raman system for daytime measurements of mineral spectra[J]. Spectrochimica Acta Part A, 2005, 61(10):2281-2287.
[9]Aggarwal R L, Farrar L W, Polla D L. Measurement of the absolute Raman scattering cross sections of sulfur and the standoff Raman detection of a 6-mm-thick sulfur specimen at 1500 m[J]. J Raman Spectrosc, 2011, 42(3):461-464.
[10]Misra A K, Acosta-Maeda T E, Porter J N, et al. Remote Raman detection of chemicals from 1752 m during afternoon Daylight[J]. Appl Spectrosc, 2020, 74(2):233-240.
[11]Chirico R, Almaviva S, Colao F, et al. Proximal detection of traces of energetic materials with an eye-safe UV Raman prototype developed for civil applications[J]. Sensors, 2015, 16(1):8.
[12]Fountain A W, Misra A K, Sharma S K, et al, Portable standoff Raman system for fast detection of homemade explosives through glass, plastic, and water[J]. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII, 2012, 835811.
[13]Nardell C A, Sharma S K, Lucey P G, et al, Remote Raman and laser-induced fluorescence (RLIF) emission instrument for detection of mineral, organic, and biogenic materials on Mars to 100 meters radial distance[J]. Instruments, Science, and Methods for Geospace and Planetary Remote Sensing, 2004, 5660.
[14]方正军, 张世伟, 金鹏程,等. 基于门控单光子相机的远程拉曼探测[J]. 光散射学报,2020,32(2):166-170.( FANG Zhengjun, ZHANG Shiwei, JIN Pengcheng, et al. Remote Raman Detection Based on Gated-Single-Photon Camera[J]. The Jourmal of Light Scattering, 2020,32(2):166-170. )
[15]Sharma S K, Misra A K, Clegg S M, et al. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration[J]. Phil Trans R Soc A, 2010, 368(1922):3167-3191.
[16]Yaney P P. Reduction of fluorescence background in Raman spectra by the pulsed Raman technique[J]. J Opt Soc Am A, 1972, 62(11):1297-1303.
[17] Kögler M, Heilala B. Time-gated Raman spectroscopy-a review[J]. Meas Sci Technol, 2020, 32(1): 012002
[18]Zachhuber B, Gasser C, Ramer G, et al. Depth profiling for the identification of unknown substances and concealed content at remote distances using time-resolved stand-off Raman spectroscopy[J]. Appl Spectrosc, 2012, 66(8):875-881.
[19]Chung J H, Cho S G. Nanosecondgated Raman spectroscopy for standoff detection of hazardous materials[J]. Bull Korean Chem Soc, 2014, 35(12):3547-3552.
[20]Pettersson A, Johansson I,Wallin S, et al. Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance[J]. Propellants Explos Pyrotech, 2009, 34(4):297-306.
[21]王彦丁, 刘晓萌. 远程拉曼光谱技术研究进展[J]. 量子电子学报, 2019, 36(3):257-263.(WANG Yanding, LIU Xiaomeng, et al. Research progress of stand-off Raman spectroscopy[J]. Chinese Journal o Quantum Electronics, 2019, 36(3):257-263.)
[22]Bobrovnikov S M, Gorlov E V, Zharkov V I. Remote detection of traces of high-energy materials on an ideal substrate using the Raman effect[J].Atmospheric and Oceanic Optics, 2017, 30(6):604-608.
[23]Tuschel D D, Mikhonin A V, Lemoff B E, et al. Deep ultraviolet resonance Raman excitation enables explosives detection[J]. Appl Spectrosc, 2010, 64(4):425-432.
[24]Lamsal N, Sharma S K, Acosta T E, et al. Ultraviolet stand-off Raman measurements using a gated spatial heterodyne Raman spectrometer[J]. Appl Spectrosc, 2016, 70(4):666-675.
[25]Amin M, Wen P, Herzog W D, et al. Optimization of ultraviolet Raman spectroscopy for trace explosive checkpoint screening[J]. Anal Bioanal Chem, 2020, 412(19):4495-4504.
[26]姚齐峰, 王帅, 夏嘉斌,等. 远距离物质拉曼光谱探测系统[J]. 红外与激光工程,2016,45(11):1-6. (YAO Qifeng, WANG Shuai, XIA Jiabin, et al. Remote Raman spectrum detection system of material[J]. Infrared and Laser Engineering, 2016,45(11):1-6.)
[27]Carter J C, Scaffidi J, Burnett S, et al. Stand-off Raman detection using dispersive and tunable filter based systems[J]. Spectrochimica Acta Part A, 2005, 61(10):2288-2298.
[28]Misra A K, Sharma S K, Lucey P G . Remote Raman spectroscopic detection of minerals and organics under illuminated conditions from a distance of 10 m using a single 532 nm laser pulse[J]. Appl Spectrosc, 2006, 60(2):223-228.
[29]Angel S M, Gomer N R, Sharma S K, et al. Remote Raman spectroscopy for planetary exploration: a review[J]. Appl Spectrosc, 2012, 66(2):137-150.
[30]Scaffidi J P, Gregas M K, Lauly B, et al. Trace molecular detection via surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering at a distance of 15 meters[J]. Appl Spectrosc, 2010, 64(5):485-492.
[31]Ehlerding A, Johansson I, Wallin S, et al. Resonance-enhanced Raman spectroscopy on explosives vapor at standoff distances[J]. International Journal of Spectroscopy, 2012, 2012:1-9.
[32]Xia J, Yao Q, Zhu L, et al. Performance analysis and small signal identification of time-resolved stand-off Raman spectroscopy system[J]. Vib Spectrosc, 2019, 102:16-23.
[33]Gares K L, Hufziger K T, Bykov S V, et al. Review of explosive detection methodologies and the emergence of standoff deep UV resonance Raman[J]. J Raman Spectrosc, 2016, 47(1):124-141.
[34]Leahy-Hoppa M R, Miragliotta J, Osiander R, et al. Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy[J]. Sensors, 2010, 10(5):4342-4372.
[35]Sathiesh Kumar V, Vasa N J, Sarathi R. Remote surface pollutant measurement by adopting a variable stand-off distance based laser induced spectroscopy technique[J]. J Phys D: Appl Phys, 2015, 48(43):435504.
[36]Zrimsek A B, Bykov S V, Asher S A. Deepultraviolet standoff photoacoustic spectroscopy of trace explosives[J]. Appl Spectrosc, 2019, 73(6):601-609.
[37]Gasda P J, Acosta-Maeda T E, Lucey P G, et al. Next generation laser-based standoff spectroscopy techniques for Mars exploration[J]. Appl Spectrosc, 2015, 69(2):173-192.
[38]Misra A K, Acosta-Maeda T E, Porter J N, et al. A two components approach for long range remote Raman and laser-induced breakdown (LIBS) spectroscopy using low laser pulse energy[J]. Appl Spectrosc, 2019, 73(3):320-328.
[39]祝铭, 王梦涵, 屈军乐. 远程LIBS结合拉曼光谱探测系统检测物质成分分布[J]. 深圳大学学报理工版, 2019, 36(5):538-543. (ZHU Ming, WANG Menghan, QU Junle. A laser induced breakdown spectroscopy and Raman spectroscopy combined remote detection system for material composition analysis[J]. Journal of Shenzhen University Science and Engineering, 2019,36(5):538-543.)
[40]Saito Y, Ichihara K, Morishita K, et al. Remote detection of the fluorescence spectrum of natural pollens floating in the atmosphere using a Laser-Induced-Fluorescence Spectrum (LIFS) Lidar[J]. Remote Sens, 2018, 10(10):1553.
[41]Sharma S K, Misra A K, AcostaT E, et al, Time-resolved remote Raman and fluorescence spectrometers for planetary exploration[J]. In Laser Radar Technology and Applications XVII, 2012, 8739.
[42]Lee H K, Lee Y H, Zhang Q, et al. Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing[J]. ACS Appl Mater Interfaces, 2013, 5(21):11409-114118.
[43]Liu Y, Pedireddy S, Lee Y H, et al. Precision synthesis: designing hot spots over hot spots via selective gold deposition on silver octahedra edges[J]. Small, 2014, 10(23):4940-4950.
[44]Zhang Q, Lee Y H, Phang I Y, et al. Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles[J]. Small, 2014, 10(13):2703-2711.
[45]Banholzer M J, Millstone J E, Qin L, et al. Rationally designed nanostructures for surface-enhanced Raman spectroscopy[J]. Chem Soc Rev, 2008, 37(5):885-897.
[46]陈雷, 孔卫贺, 韩晓霞,等. 表面增强拉曼光谱(SERS)技术对非标记蛋白质的研究进展[J]. 光谱学与光谱分析, 2016, 36(10):3087-3091.(CHEN Lei, KONG Weihe, HAN Xiaoxia, et al. Study of proteins based on surface-enhanced Raman spectroscopy(SERS)[J]. Spectroscopy and Spectral Analysis, 2016, 36(10):3087-3091.)
[47]Xu H, Aizpurua J, KäLl M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering[J]. Physical Review E, 2000, 62(3):4318-4324.
[48]Petryayeva E, Krull U J. Localized surface plasmon resonance: nanostructures, bioassays and biosensin--a review[J]. Anal Chim Acta, 2011, 06(1):8-24.
[49]Tian C, Deng Y, Zhao D, et al. Plasmonic silver supercrystals with ultrasmall nanogaps for ultrasensitive SERS-based moleculed detection[J]. Adv Optical Mater, 2015, 3(3):404-411.
[50]Ma C, Gao Q, Hong W, et al. Real-time probing nanopore-in-nanogap plasmonic coupling effect on silver supercrystals with surface-enhanced Raman spectroscopy[J]. Adv Funct Mater, 2017, 27(2):1603233.
[51]Novotny L, Bian R, Xie X . Theory of nanometric optical tweezers[J]. Phys Rev Lett, 1997, 79(4):645-648.
[52]Hao F, Nehl C L, Hafner J H, et al. Plasmon resonances of a gold nanostar[J]. Nano Lett, 2007, 7(3):729-732.
[53]Goh M S, Lee Y H, Pedireddy S, et al. A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application[J]. Langmuir, 2012, 28(40):14441-14449.
[54]Zhou W, Yin B C, Ye B C. Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO2@Ag nanoparticle substrate[J]. Biosens Bioelectron, 2017, 87(15):187-194.
[55]Fang J, Du S, Lebedkin S, et al. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy[J]. Nano Lett, 2010, 10(12):5006-5013.
[56]Liu Z, Yang Z, Peng B, et al. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins[J]. Adv Mater, 2014, 26(15):2431-2439.
[57]何玉青, 魏帅迎, 郭一新,等. 远程紫外拉曼光谱检测技术研究进展[J]. 中国光学, 2019, 12(6):1249-1259. (HE Yuqing, WEI Shuaiying, GUO Yixin, et al. Research progress of remote detection with ultraviolet Raman spectroscopy[J]. Chinese Optics, 2019, 12(6):1249-1259.)
[58] Phan-Quang G C, Lee H K, Phang I Y, et al. Plasmonic colloidosomes as three-dimensional SERS platforms with enhanced surface area for multiphase sub-microliter toxin sensing[J]. Angew Chem Int Ed, 2015, 54(33):9691-9695.
[59]Phan-Quang G C, Wee E H Z, Yang F, et al. Online flowing colloidosomes for sequential multi-analyte high-throughput SERS analysis[J]. Angew Chem Int Engl, 2017, 56(20):5565-5569.
[60]Phan-Quang G C, Lee H K, Teng H W, et al. Plasmonic hotspots in air: an omnidirectional three-dimensional platform for stand-off in-air SERS sensing of airborne species[J]. Angew Chem Int Ed, 2018, 57(20):5792-5796.
[61]占金华, 陈娟, 史玉娥. 一种应用于表面增强拉曼光谱原位检测爆炸物的贵金属溶胶喷雾及其制备方法与应用[P]. 中国,发明专利,201510896482,2016.
[62]Phan-Quang G C, Yang N, Lee H K, et al. Tracking airborne molecules from afar: three-dimensional metal-organic framework-surface-enhanced Raman scattering platform for stand-off and real-time atmospheric monitoring[J]. ACS Nano, 2019, 13(10):12090-12099.
[63]Lai H, Li G, Xu F, et al. Metal-organic frameworks: opportunities and challenges for surface-enhanced Raman scattering-a review[J]. J Mater Chem C, 2020, 8(9):2952-2963.
[64]Sim H Y F, Lee H K, Han X, et al. Concentrating immiscible molecules at solid@MOF interfacial nanocavities to drive an inert gas-liquid reaction at ambient conditions[J]. Angew Chem Int Ed, 2018, 57(52): 17058-17062.
[65]Qiao X, Su B, Liu C, et al. Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers is Superparticle@MOF structure[J]. Adv Mater, 2018, 30(5):1702275.
[66]Koh C S L, Lee H K, Han X, et al. Plasmonic nose: integrating the MOF-enabled molecular preconcentration effect with a plasmonic array for recognition of molecular-level volatile organic compounds[J]. Chem Commun, 2018, 54(20):2546-2549.
[67]Wang S, Wang Q, Feng X, et al. Explosives in the cage: metal-organic frameworks for high-energy materials sensing and desensitization[J]. Adv Mater, 2017,29(36):1701898.
[68]Manz A, Miyahara Y, Miura J, et al. Design of an open-tubular column liquid chromatograph using silicon chip technology[J]. Sensors & Actuators B Chemical, 1990, 1(1):249-255.
[69]Keir R, Igata E, Arundell M, et al. SERRS. In situ substrate formation and improved detection using microfluidics[J]. Anal Chem, 2002, 74(7):1503-1508.
[70]Bai S, Serien D, Ma Y, et al. Attomolar sensing based on liquid interface-assisted surface-enhanced Raman scattering in microfluidic chip by femtosecond laser processing[J]. ACS Appl Mater Interfaces, 2020, 12(37):42328-42338.
[71]Piorek B D,Lee S J, Moskovits M, et al. Free-surface microfluidics/surface-enhanced Raman spectroscopy for real-time trace vapor detection of explosives[J]. Anal Chem, 2012, 84(22):9700-9705.
[72]He X, Wang S, Liu Y, et al. Ultra-sensitive detection of uranyl ions with a specially designed high-efficiency SERS-based microfluidic device[J]. Science China Chemistry, 2019, 62(8):1064-1071.
[73]Yang K, Zong S, Zhang Y, et al. Array-assisted SERS microfluidic chips for highly sensitive and multiplex gas sensing[J]. ACS Appl Mater Interfaces, 2020, 12(1):1395-1403.

基金

国家自然科学基金资助项目(批准号:No. 21675122, 21874104, 22074115)
PDF(3330 KB)

405

Accesses

0

Citation

Detail

段落导航
相关文章

/