DyVO4高压拉曼光谱研究

王宝云, 宋茂双

PDF(2683 KB)
光散射学报 ›› 2021, Vol. 33 ›› Issue (2) : 149-155. DOI: 10.13883/j.issn1004-5929.202102006
材料中的应用

DyVO4高压拉曼光谱研究

  • 王宝云1,2,3, 宋茂双1,3
作者信息 +

High pressure Raman spectroscopic study of DyVO4

  • WANG Baoyun1,2,3, SONG Maoshuang1,3
Author information +
History +

摘要

利用金刚石压腔和拉曼光谱研究了DyVO4的压缩行为。结果表明:DyVO4在0-35.4 GPa发生了两次相变。第一次相变在7.8±0.5 GPa开始,在13.3 GPa结束,DyVO4从锆石相不可逆地转变成白钨矿相,这个相变伴随着锆石相拉曼峰的消失和白钨矿相拉曼峰的出现,光谱特征清晰。第二个相变发生在约21.9 GPa, DyVO4从白钨矿相进一步可逆地转变成褐钇铌矿相。白钨矿相模133 cm-1 (Bg)频率随压力的演化趋势在相变点发生变化,另外对应VO4四面体伸缩振动区域的拉曼峰在褐钇铌矿相逐渐展宽。DyVO4的褐钇铌矿相一直稳定到35.4 GPa,卸压到常压后,DyVO4是白钨矿相。

Abstract

The compression behaviour of DyVO4 has been studied using the combined diamond anvil cell and Raman spectra. The results show DyVO4 experiences two phase transitions at pressure from ambient pressure to 35.4 GPa. The first phase transition takes place at 7.8±0.5 GPa and finishes at 13.3 GPa. DyVO4 transforms from zircon phase to scheelite phase companied by distinct disappearance and appearance of Raman peaks in zircon phase and scheelite phase. The second phase transition takes place at 21.9 GPa, DyVO4 transforms from scheelite phase to fergusonite phase. The evolution of 133 cm-1 (Bg) mode of scheelite phase changes at transition point. The modes corresponding to stretching vibration of VO4 of fergusonite phase gradually broaden. The fergusonite phase is stable up to 35.4 GPa. DyVO4 is scheelite phase at ambient condition after decompression.

关键词

拉曼光谱 / 高压 / 锆石 / 白钨矿 / 褐钇铌矿

Key words

Raman spectra / High pressure / Zircon / Scheelite / Fergusonite

引用本文

导出引用
王宝云, 宋茂双. DyVO4高压拉曼光谱研究. 光散射学报. 2021, 33(2): 149-155 https://doi.org/10.13883/j.issn1004-5929.202102006
WANG Baoyun, SONG Maoshuang. High pressure Raman spectroscopic study of DyVO4. Chinese Journal of Light Scattering. 2021, 33(2): 149-155 https://doi.org/10.13883/j.issn1004-5929.202102006

参考文献

[1]M. Oshikiri, J. Ye, M. Boero, Inhomogeneous RVO4 Photocatalyst Systems (R= Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), The Journal of Physical Chemistry C, 118 (2014) 8331-8341.
[2]J. Liu, H. Zhang, Z. Wang, et al. Continuous-wave and pulsed laser performance of Nd: LuVO 4 crystal, Opt. Lett., 29 (2004) 168-170.
[3]S. Sun, H. Yu, Y. Wang, et al. Thermal, spectroscopic and laser characterization of monoclinic vanadate Nd: LaVO 4 crystal, Opt. Express, 21 (2013) 31119-31129.
[4]C.-J. Jia, L.-D. Sun, F. Luo, et al. Structural transformation induced improved luminescent properties for LaVO 4: Eu nanocrystals, Appl. Phys. Lett., 84 (2004) 5305-5307.
[5]A. Kalinichev, M. Kurochkin, E. Golyeva, et al. Near-infrared emitting YVO4: Nd3+ nanoparticles for high sensitive fluorescence thermometry, J. Lumin., 195 (2018) 61-66.
[6]R. Jindal, M. Sinha, H. Gupta, Lattice vibrations of AVO4 crystals (A= Lu, Yb, Dy, Tb, Ce), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 113 (2013) 286-290.
[7]M. Liu, Z.-L. Lv, Y. Cheng, et al. Structural, elastic and electronic properties of CeVO4 via first-principles calculations, Computational materials science, 79 (2013) 811-816.
[8] Z. Huang, L. Zhang, W. Pan, Physical properties of zircon and scheelite lutetium orthovanadate: Experiment and first-principles calculation, J. Solid State Chem., 205 (2013) 97-103.
[9]T. Marqueño, V. Monteseguro, F. Cova, et al. High-pressure phase transformations in NdVO4 under hydrostatic, conditions: a structural powder x-ray diffraction study, J. Phys.: Condens. Matter, 31 (2019) 235401.
[10]M. Moussa, M. Djermouni, S. Kacimi, et al. First-principles calculations of structural, magnetic phase stability and electronic properties of RVO4 compounds, Computational materials science, 68 (2013) 361-366.
[11]B.C. Chakoumakos, M.M. Abraham, L.A. Boatner, Crystal structure refinements of zircon-type MVO4 (M= Sc, Y, Ce, Pr, Nd, Tb, Ho, Er, Tm, Yb, Lu), J. Solid State Chem., 109 (1994) 197-202.
[12]D. Errandonea, R. Kumar, S. Achary, et al. In situ high-pressure synchrotron x-ray diffraction study of CeVO 4 and TbVO 4 up to 50 GPa, PhRvB, 84 (2011) 224121.
[13]A.B. Garg, D. Errandonea, P. Rodríguez-Hernández, et al. High-pressure structural behaviour of HoVO4: combined XRD experiments and ab initio calculations, J. Phys.: Condens. Matter, 26 (2014) 265402.
[14]D. Errandonea, C. Popescu, S. Achary, et al. In situ high-pressure synchrotron X-ray diffraction study of the structural stability in NdVO4 and LaVO4, Mater. Res. Bull., 50 (2014) 279-284.
[15]D. Errandonea, S.N. Achary, J. Pellicer-Porres, et al. Pressure-induced transformations in PrVO4 and SmVO4 and isolation of high-pressure metastable phases, lnorg. Chem., 52 (2013) 5464-5469.
[16]A.B. Garg, D. Errandonea, High-pressure powder x-ray diffraction study of EuVO4, J. Solid State Chem., 226 (2015) 147-153.
[17]A.B. Garg, K. Shanavas, B. Wani, et al. Phase transition and possible metallization in CeVO4 under pressure, J. Solid State Chem., 203 (2013) 273-280.
[18]B. Yue, F. Hong, S. Merkel, et al. Deformation behavior across the zircon-scheelite phase transition, Phys. Rev. Lett., 117 (2016) 135701.
[19]C. Popescu, A.B. Garg, D. Errandonea, et al. Pressure-induced phase transformation in zircon-type orthovanadate SmVO4 from experiment and theory, J. Phys.: Condens. Matter, 28 (2016) 035402.
[20]W. Paszkowicz, J. Lopez-Solano, P. Piszora, et al. Equation of state and electronic properties of EuVO4: A high-pressure experimental and computational study, J. Alloys Compd., 648 (2015) 1005-1016.
[21]R. Rao, A.B. Garg, B. Wani, Raman spectroscopic studies on CeVO4 at high pressures, in:Journal of Physics: Conference Series, IOP Publishing, 2012, pp. 012010.
[22]J. Gong, X. Fan, R. Dai, et al. High-Pressure Phase Transition of Micro-and Nanoscale HoVO4 and High-Pressure Phase Diagram of REVO4 with RE Ionic Radius, ACS omega, 3 (2018) 18227-18233.
[23]E. Bandiello, D. Errandonea, F. Piccinelli, et al. Characterization of Flux-Grown Sm x Nd1-x VO4 Compounds and High-Pressure Behavior for x= 0.5, The Journal of Physical Chemistry C, 123 (2019) 30732-30745.
[24]E. Bandiello, D. Errandonea, J. González-Platas, et al. Phase Behavior of TmVO4 under Hydrostatic Compression: An Experimental and Theoretical Study, lnorg. Chem., 59 (2020) 4882-4894.
[25]E. Bandiello, C. Popescu, E.L. da Silva, et al. PrVO4 under High Pressure: Effects on Structural, Optical, and Electrical Properties, lnorg. Chem., (2020).
[26]D. Errandonea, High pressure crystal structures of orthovanadates and their properties, J. Appl. Phys., 128 (2020) 040903.
[27]D. Errandonea, Exploring the properties of MTO4 compounds using high‐pressure powder x-ray diffraction, Cryst. Res. Technol., 50 (2015) 729-736.
[28]D. Errandonea, A.B. Garg, Recent progress on the characterization of the high-pressure behaviour of AVO4 orthovanadates, Prog. Mater Sci., 97 (2018) 123-169.
[29]K. Kishimoto, T. Ishikura, H. Nakamura, et al. Antiferroelectric lattice distortion induced by ferroquadrupolar order in DyVO 4, PhRvB, 82 (2010) 012103.
[30]A. Midya, N. Khan, D. Bhoi, et al. Giant magnetocaloric effect in antiferromagnetic DyVO4 compound, Physica B: Condensed Matter, 448 (2014) 43-45.
[31]R. Elliott, G. Gehring, A. Malozemoff, et al. Theory of co-operative Jahn-Teller distortions in DyVO4 and TbVO4 (Phase transitions), Journal of Physics C: Solid State Physics, 4 (1971) L179.
[32]H. Li, Y. Liu, Y. Cui, et al. Facile synthesis and enhanced visible-light photoactivity of DyVO4/g-C3N4I composite semiconductors, Applied Catalysis B: Environmental, 183 (2016) 426-432.
[33]S.J. Duclos, A. Jayaraman, G. Espinosa, et al. Raman and optical absorption studies of the pressure-induced zircon to scheelite structure transformation in TbVO4 and DyV04, J. Phys. Chem. Solids, 50 (1989) 769-775.
[34]N.N. Patel, A.B. Garg, S. Meenakshi, et al. High Pressure Raman Scattering Study on the Phase Stability of DyVO 4, in:AIP Conf. Proc., American Institute of Physics, 2011, pp. 99-100.
[35]W. Paszkowicz, O. Ermakova, J. López-Solano, et al. Equation of state of zircon-and scheelite-type dysprosium orthovanadates: a combined experimental and theoretical study, J. Phys.: Condens. Matter, 26 (2013) 025401.
[36]J. Bastide, Simplified systematics of the compounds ABX4 (X= O2-, F-) and possible evolution of their crystal-structures under pressure, J. Solid State Chem., 71 (1987) 115-120.
[37]F. Manjón, P. Rodríguez-Hernández, A. Muñoz, et al. Lattice dynamics of YVO 4 at high pressures, PhRvB, 81 (2010) 075202.
[38]D. Errandonea, F. Manjón, A. Muñoz, et al. High-pressure polymorphs of TbVO4: A Raman and ab initio study, J. Alloys Compd., 577 (2013) 327-335.
[39]R. Rao, A.B. Garg, T. Sakuntala, et al. High pressure Raman scattering study on the phase stability of LuVO4, J. Solid State Chem., 182 (2009) 1879-1883.
[40]H. Mao, J.-A. Xu, P. Bell, Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions, Journal of Geophysical Research: Solid Earth, 91 (1986) 4673-4676.
[41]T. Marqueño, D. Errandonea, J. Pellicer-Porres, et al. High-pressure polymorphs of gadolinium orthovanadate: X-ray diffraction, Raman spectroscopy, and ab initio calculations, PhRvB, 100 (2019) 064106.

基金

国家自然科学基金项目(41874107、41574079)
PDF(2683 KB)

110

Accesses

0

Citation

Detail

段落导航
相关文章

/