过渡金属硫化物(transition metal dichalcogenides,TMDs)具有优异的光学、电学性能,其中,二维WSe2薄膜作为典型的TMDs类材料之一,凭借其可调控的光学带隙,在光电子器件领域有极大的潜在应用价值。但是,由于单层的WSe2薄膜具有较低的光学吸收截面,对于光的吸收效率较弱,限制了其在光电器件中的应用发展。因此,如何提高单层WSe2薄膜的光吸收和光发射效率成为了人们的研究热点。本文将单层WSe2薄膜作为研究对象构建了Au膜-WSe2复合结构,通过显微光致发光光谱分析其光学性能,分别对比了Au膜-WSe2交界处和Au膜-WSe2复合区域与纯WSe2区域的发光特性,研究表明Au膜与WSe2薄膜直接接触发生了荧光淬灭效应,发光强度减弱;而在两者交界处,受到金属表面等离极化激元效应的作用,交界处的发光强度有明显的增强;为了解释这现象,本文建立了相应的物理模型来解释Au膜-WSe2复合结构的发光特性。
Abstract
Transition Metal Dichalcogenides (TMDs) have excellent optical and electrical properties. As one of the typical TMDs materials, two dimensional WSe2 film has great potential application in the field of optoelectronic devices with its excellent optical band gap. However, the monolayer WSe2 film with low optical absorption limits its application and development in photoelectric devices. Therefore, how to improve the light absorption and emission efficiency of monolayer WSe2 films has become a research hotspot. In our works, the Au film-WSe2 heterostructure was chosen as the research object, and used the microscopic photoluminescence spectrum to analysis the optical properties. We compared the photoluminescence properties of the Au film-WSe2 heterostructure region and the edge of Au film-WSe2 heterostructure. The results show that the photoluminescence intensity of Au film-WSe2 heterostructure was weakened as fluorescence quenching effect, whereas the photoluminescence intensity of the edge of Au film-WSe2 heterostructure was significantly enhanced own to the surface plasmon polariton effect. Finally, in order to explain this phenomenon, a physical model was established to explain the photoluminescence properties of the Au film-WSe2 heterostructure.
关键词
Au膜-WSe2复合结构 /
发光特性 /
表面等离极化激元 /
荧光淬灭
{{custom_keyword}} /
Key words
Au film-WSe2 heterostructure /
photoluminescence properties /
surface plasmon polariton /
fluorescence quenching
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306(5696): 666-669.
[2]Guimaraes M H, Gao H, Han Y, et al. Atomically Thin Ohmic Edge Contacts Between Two-Dimensional Materials[J]. ACS Nano, 2016, 10(6): 6392-6399.
[3]Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D Transition Metal Dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8): 17033.
[4]Chhowalla M, Liu Z, Zhang H. Two-Dimensional Transition Metal Dichalcogenide (TMD) Nanosheets[J]. Chemical Society Reviews, 2015, 44(9): 2584-2586.
[5]Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712.
[6]Jariwala D, Davoyan A R, Wong J, et al. Van Der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook[J]. ACS Photonics, 2017, 4(12): 2962-2970.
[7]Huang X, Tan C, Zhang H. 25th Anniversary Article: Hybrid Nanostructures Based on Two-Dimensional Nanomaterials[J]. Advanced Materials, 2014, 26(14): 2185-2204.
[8]Wei X, Yan F G, Shen C, et al. Photodetectors Based on Junctions of Two-Dimensional Transition Metal Dichalcogenides[J]. Chinese Physics B, 2017, 26(03): 174-188.
[9]Lin H T, Chang C Y, Cheng P J, et al. Circular Dichroism Control of Tungsten Diselenide (WSe2) Atomic Layers with Plasmonic Meta-Molecules[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15996-16004.
[10]Zhang X, Qiao X F, Shi W, et al. Phonon and Raman Scattering of Two-Dimensional Transition Metal Dichalcogenides From Monolayer, Multilayer to Bulk Material[J]. Chemical Society Reviews, 2015, 44(9): 2757-2785.
[11]Li X, Zhu J, Wei B. Hybrid Nanostructures of Metal Two-Dimensional Nanomaterials for Plasmon-Enhanced Applications[J]. Chemical Society Reviews, 2016, 45(11): 3145-3187.
[12]Zhang Y, Ugeda MM, et al. Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films [J]. Nano Letters, 2016, 16(4):2485-2491.
[13]Li H, Wu J, Yin Z, et al. Preparation and Applications of Mechanically Exfoliated Single-Layer and Multi layer MoS2 and WSe2 Nanosheets[J]. Accounts of Chemical Research, 2014, 47(4): 1067-1075.
[14]He K, Kumar N, Zhao L, et al. Tightly Bound Excitons in Monolayer WSe2[J]. Physical Review Letters, 2014, 113(2): 026803.
[15]郑迪, 李杨, 陈文, 付统, 孙嘉伟, 张顺平, 徐红星. 新型等离激元光学和过渡金属二硫化物复合体系[J].中国科学:物理学,力学,天文学,2019,49(12): 44-67. (Zheng Di, Li Yang, Chen Wen, Fu Tong, Sun Jiawei, Zhang Shunping, Xu Hongxing. Novel Isoplasmon Optical and Transition Metal Disulfide Composite Systems[J]. Chinese Physics, Mechanics and Astronomy, 2019, 49(12): 44-67.)
[16]Koperski M, Nogajewski K, Arora A, et al. Single Photon Emitters in Exfoliated WSe2 Structures[J]. Nature Nanotechnology, 2015, 10(6): 503-506.
[17]Wang Z, Dong Z, Gu Y, et al. Giant Photoluminescence Enhancement in Tungsten-Diselenide-Gold Plasmonic Hybrid Structures[J]. Nature Communications, 2016, 7: 11283.
[18]Atwater H A, Polman A. Plasmonics for Improved Photovoltaic Devices[J]. Nature Materials, 2010, 9(3): 205-213.
[19]Arora A, Dixit T, Kumar K V A, et al. Plasmon Induced Brightening of Dark Exciton in Monolayer WSe2 for Quantum Optoelectronics[J]. Applied Physics Letters, 2019, 114(20): 201101.1-201101.5.
[20]Kelly P J, Arnell R D. Magnetron Sputtering: A Review of Recent Developments and Applications[J]. Vacuum, 2000, 56(3): 159-172.
[21]Mendes R G, Pang J, Bachmatiuk A, et al. Electron-Driven In Situ Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures[J]. ACS Nano, 2019, 13(2): 978-995.
[22]Adhikari N, Bandyopadhyay A, Kaul A.Nanoscale Characterization of WSe2 for Opto-electronics Applications[J]. Mrs Advances, 2017, 2(60): 3715-3720.
[23]杜晓雷, 吕燕伍, 江潮. 单层与双层WSe2纳米片层的光致发光[J]. 发光学报, 2014(05): 513-518. (Du Xiaolei, Lu Yanwu, Jiang Chao. Photoluminescence of Monolayer and Double-Layer WSe2 Nanolayers [J]. Journal of Luminescence, 2014(05): 513-518.)
[24]Wei X X, Yu Z H, Hu F R, et al. Mo-O Bond Doping and Related-Defect Assisted Enhancement of Photoluminescence in Monolayer MoS2. AIP Advances, 2014, 4: 123004.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
广东省高校光电子材料及应用重点实验室 (No:2017KSYS011), 广东省高校创新强校项目(2017KTSCX186, 2020KQNCX91, 2020ZDZX2022),广东省基础与应用基础研究基金-青年基金(019A1515111190),国家自然科学基金(12004285),五邑大学港澳联合研发基金(2019WGALH03)。
{{custom_fund}}