Preparation of Bioinspired Surface Enhanced Raman Spectroscopy Substrate and Applications in Bioanalysis

NIE Axiu, LV Zhicheng, WANG Wenjing, ZHU Yuanyuan, LI Jinjie, HAN Heyou

PDF(1319 KB)
Chinese Journal of Light Scattering ›› 2019, Vol. 31 ›› Issue (4) : 306-316. DOI: 10.13883/j.issn1004-5929.201904002
Overview

Preparation of Bioinspired Surface Enhanced Raman Spectroscopy Substrate and Applications in Bioanalysis

  • NIE Axiu, LV Zhicheng, WANG Wenjing, ZHU Yuanyuan, LI Jinjie, HAN Heyou*
Author information +
History +

Abstract

After billions of years of evolution and development, the surface of animals and plants in nature has formed regular micro/nano structures and peculiar functions. Bioinspired surface enhanced Raman scattering (SERS) substrate is a kind of substrate material with the regular structure or similar property to the animals and plants. It has become a research hotpot in the field of SERS substrate since it was discoveried. And it also provides a new idea for solving the non-uniform morphology and structure of traditional SERS substrate. In this paper, we introduced the bioinspired SERS substrate and its preparation method, summarized the application of the bioinspired SERS substrate, and made a preliminary outlook for its future development.

Key words

Surface enhanced Raman scattering (SERS) / SERS substrate / bioinspired / bioanalysis

Cite this article

Download Citations
NIE Axiu, LV Zhicheng, WANG Wenjing, ZHU Yuanyuan, LI Jinjie, HAN Heyou. Preparation of Bioinspired Surface Enhanced Raman Spectroscopy Substrate and Applications in Bioanalysis. Chinese Journal of Light Scattering. 2019, 31(4): 306-316 https://doi.org/10.13883/j.issn1004-5929.201904002

References

[1] Campion A, Kambhampati P. Surface-enhanced Raman scattering[J]. Chem Soc Rev, 1998, 27 (4): 241-250.
[2] Lin X M, Cui Y, Xu Y H, et al. Surface-enhanced Raman spectroscopy: substrate-related issues[J]. Anal Bioanal Chem, 2009, 394 (7): 1729-1745.
[3] De Angelis F, Gentilef F, Mecarini F, et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures[J]. Nat Photonics, 2011, 5 (11): 682-687.
[4] Xu Q, Wan Y, Hu T S, et al. Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics[J]. Nat Commun, 2015, 6: 8949.
[5] Shao F, Lu Z, Liu C, et al. Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing[J]. ACS Appl Mater Interfaces, 2014, 6 (9): 6281-6289.
[6] Zheng Y, Gao X, Jiang L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3 (2): 178-182.
[7] Zhang Z, Yu W, Wang J, et al. Ultrasensitive Surface-Enhanced Raman Scattering Sensor of Gaseous Aldehydes as Biomarkers of Lung Cancer on Dendritic Ag Nanocrystals[J]. Anal Chem, 2017, 89 (3): 1416-1420.
[8] 田野. PDMS壁虎脚仿生复合材料设计与摩擦粘附特性[D]. 哈尔滨工业大学博士学位论文, 2016: 1-131.(TIAN Ye. Design of gecko-inspired PDMS composite pillar arrays and their friction properties[D]. Harbin institute of Technology doctoral dissertation, 2016: 1-131.).
[9] Wang P, Wu L, Lu Z, et al. Gecko-Inspired Nanotentacle Surface-Enhanced Raman Spectroscopy Substrate for Sampling and Reliable Detection of Pesticide Residues in Fruits and Vegetables[J]. Anal Chem, 2017, 89 (4): 2424-2431.
[10] Lovera P, Creedon N, Alatawi H, et al. Metal capped polystyrene nanotubes arrays as super-hydrophobic substrates for SERS applications[C]. In Biophotonics: Photonic Solutions for Better Health Care IV, International Society for Optics and Photonics, 2014: 912908.
[11] Mo X, Wu Y, Zhang J, et al. Bioinspired Multifunctional Au Nanostructures with Switchable Adhesion[J]. Langmuir, 2015, 31 (39): 10850-10858.
[12] Tanahashi I, Harada Y. Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings[J]. Nanoscale Res lett, 2014, 9: 298.
[13] Zhang X, Zhang X, Luo C, et al. Volume-Enhanced Raman Scattering Detection of Viruses[J]. Small, 2019, 15 (11): 1805516.
[14] 杨诚智, 关玉, 陈世坤, 等. 蝶翅精细分级结构金属纳米复合材料的研究进展[J]. 金属学报, 2018, 55(1): 101-108.(YANG Chengzhi, GUAN Yu, CHEN Shikun, et al. Research progress on the metal nanocomposites with butterfly wing hierarchical structure[J]. Acta Metall Sinica, 2018, 55 (1): 101-108.).
[15] Garrett N L, Vukusic P, Ogrin F, et al. Spectroscopy on the wing: naturally inspired SERS substrates for biochemical analysis[J]. J Biophoton, 2009, 2 (3): 157-166.
[16] Mu Z, Zhao X, Xie Z, et al. In situ synthesis of gold nanoparticles (Au NPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS)[J]. J Mater Chem B, 2013, 1 (11): 1607-1613.
[17] Tan Y, Gu J,Zang X, et al. Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures[J]. Angew Chem Int Ed, 2011, 50 (36): 8307-8311.
[18] Shi G, Wang M, Zhu Y, et al. Biomimetic synthesis of Ag-coated glasswing butterfly arrays as ultra-sensitive SERS substrates for efficient trace detection of pesticides[J]. Beilstein J Nanotechnol, 2019, 10: 578-588.
[19] Zhang C, Ma M Q, Chen T T, et al. Dopamine-Triggered One-Step Polymerization and Codeposition of Acrylate Monomers for Functional Coatings[J]. ACS Appl Mater Interfaces, 2017, 9 (39): 34356-34366.
[20] Akin M S, Yilmaz M, Babur E, et al. Large area uniform deposition of silver nanoparticles through bio-inspired polydopamine coating on silicon nanowire arrays for practical SERS applications[J]. J Mater Chem B, 2014, 2 (30): 4894-4900.
[21] Cai J, Huang J, Ge M, et al. Immobilization of Pt Nanoparticles via Rapid and Reusable Electropolymerization of Dopamine on TiO2 Nanotube Arrays for Reversible SERS Substrates and Nonenzymatic Glucose Sensors[J]. Small, 2017, 13 (19): 1604240.
[22] Jiang N, Hu Y, Wei W, et al. Detection of microRNA using a polydopamine mediated bimetallic SERS substrate and a re-circulated enzymatic amplification system[J]. Mikrochim Acta, 2019, 186 (2): 65.
[23] Wang M, Shi G, Zhu Y, et al. Au-Decorated Dragonfly Wing Bioscaffold Arrays as Flexible Surface-Enhanced Raman Scattering (SERS) Substrate for Simultaneous Determination of Pesticide Residues[J]. Nanomaterials, 2018, 8 (5): 278.
[24] Kong T, Luo G, Zhao Y, et al. Bioinspired Superwettability Micro/Nanoarchitectures: Fabrications and Applications[J]. Adv Funct Mater, 2019, 29 (11): 1808012.
[25] Koch K, Bhushan B, Jung Y C, et al. Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion[J]. Soft Matter, 2009, 5 (7): 1386-1393.
[26] Jin B, He J, Li J, et al. Lotus Seedpod Inspired SERS Substrates: A Novel Platform Consisting of 3D Sub-10 nm Annular Hot Spots for Ultrasensitive SERS Detection[J]. Adv Opt mater, 2018, 6 (13): 1800056.
[27] Feng L, Zhang Y, Xi J, et al. Petal Effect: A Superhydrophobic State with High Adhesive Force[J]. Langmuir, 2008, 24 (8): 4114-4119.
[28] Chen H, Zhang P, Zhang L, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532 (7597): 85-89.
[29] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202: 1-8.
[30] Feng L, Li S, Li Y, et al. Super-Hydrophobic Surfaces: From Natural to Artificial[J]. Adv Mater, 2002, 14 (24): 1857-1860.
[31] Zhang Q X, Chen Y X, Guo Z, et al. Bioinspired multifunctional hetero-hierarchical micro/nanostructure tetragonal array with self-cleaning, anticorrosion, and concentrators for the SERS detection[J]. ACS Appl Mater Interfaces, 2013, 5 (21): 10633-10642.
[32] Wang Y, Zhang M, Feng L, et al. Tape-Imprinted Hierarchical Lotus Seedpod-Like Arrays for Extraordinary Surface-Enhanced Raman Spectroscopy[J]. Small, 2019: 1804527.
[33] Law J B, Ng A M, He A Y, et al. Bioinspired ultrahigh water pinning nanostructures[J]. Langmuir, 2014, 30 (1): 325-331.
[34] Xu B B, Zhang Y L, Zhang W Y, et al. Silver-Coated Rose Petal: Green, Facile, Low-Cost and Sustainable Fabrication of a SERS Substrate with Unique Superhydrophobicity and High Efficiency[J]. Adv Opt mater, 2013, 1 (1): 56-60.
[35] Chou S Y, Yu C C, Yen Y T, et al. Romantic Story or Raman Scattering Rose Petals as Ecofriendly, Low-Cost Substrates for Ultrasensitive Surface-Enhanced Raman Scattering[J]. Anal Chem, 2015, 87 (12): 6017-6024.
[36] Li J, Yan H, Tan X, et al. Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection[J]. Anal Chem, 2019, 91 (6): 3885-3892.
[37] Yang S, Dai X, Stogin B B, et al. Ultrasensitive surface-enhanced Raman scattering detection in common fluids[J]. Proc Natl Acad Sci USA, 2016, 113 (2): 268-273.
[38] Huang J, Chen F, Zhang Q, et al. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates[J]. ACS Appl Mater Interfaces, 2015, 7 (10): 5725-5735.
[39] Li H, Yang Q, Hou J, et al. Bioinspired Micropatterned Superhydrophilic Au-Areoles for Surface-Enhanced Raman Scattering (SERS) Trace Detection[J]. Adv Funct Mater, 2018, 28 (21): 1800448.
[40] Huang J A, Zhang Y L, Zhao Y, et al. Superhydrophobic SERS chip based on a Ag coated natural taro-leaf[J]. Nanoscale, 2016, 8 (22): 11487-114993.
PDF(1319 KB)

197

Accesses

0

Citation

Detail

Sections
Recommended

/