Rapid Bacterial Diagnosis by Raman Spectroscopy

YANG Kai, LI Hongzhe, ZHU Yongguan, CUI Li

PDF(1106 KB)
Chinese Journal of Light Scattering ›› 2019, Vol. 31 ›› Issue (4) : 336-345. DOI: 10.13883/j.issn1004-5929.201904005
Overview

Rapid Bacterial Diagnosis by Raman Spectroscopy

  • YANG Kai1,2, LI Hongzhe1,2, ZHU Yongguan1, CUI Li1*
Author information +
History +

Abstract

Pathogenic bacteria have long been regarded as one of the most serious threats to public health. With the globally growing antibiotic resistance, health threat from antibiotic resistant pathogens is dramatically increasing. Rapid identification of pathogenic bacteria and antibiotic susceptibility testing (AST) are essential for efficient diagnosis and treatment. Raman spectroscopy is a very promising method capable of providing fingerprint information of pathogenic bacteria for both identification and AST. Here, we reviewed the recent achievements of utilizing both single-cell Raman and surface-enhanced Raman spectroscopy for rapid bacterial diagnosis, including rapid bacterial identification and AST, pretreatment of clinical samples for bacteria separation, and chemometric methods for spectral analysis. Perspective on future development and challenges in Raman methodology was also provided.

Key words

Single-Cell Raman Spectroscopy / Surface-Enhanced Raman Spectroscopy / Rapid Bacterial Identification / Rapid Antibiotic Susceptibility Testing

Cite this article

Download Citations
YANG Kai, LI Hongzhe, ZHU Yongguan, CUI Li. Rapid Bacterial Diagnosis by Raman Spectroscopy. Chinese Journal of Light Scattering. 2019, 31(4): 336-345 https://doi.org/10.13883/j.issn1004-5929.201904005

References

[1] O'Neill, J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations; Review on Antimicrobial Resistance, 2014.
[2] Andersson D I, Hughes D. Microbiological effects of sublethal levels of antibiotics[J]. Nature Reviews Microbiology, 2014, 12(7): 465-478.
[3] World Health Organization Antimicrobial resistance: global report on surveillance; WHO Press, 2014.
[4] Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Fifth Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, 2015.
[5] Baltekin Ö, Boucharin A, Tano E, et al. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(34): 9170-9175.
[6] Choi J, Yoo J, Lee M, et al. A rapid antimicrobial susceptibility test based on single-cell morphological analysis[J]. Science Translational Medicine, 2014, 6(267): 267ra174.
[7] Schoepp N G, Schlappi T S, Curtis M S, et al. Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples[J]. Science Translational Medicine, 2017, 9(410): eaal3693.
[8] Avesar J, Rosenfeld D, Truman-Rosentsvit M, et al. Rapid phenotypic antimicrobial susceptibility testing using nanoliter arrays[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(29): E5787-E5795.
[9] Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing[J]. New England Journal of Medicine, 2018, 379(15): 1403-1415.
[10] Longo G, Alonso-Sarduy L, Rio L M, et al. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors[J]. Nature Nanotechnology, 2013, 8(7): 522-526.
[11] Puppels G J, de Mul F F M, Otto C. et al. Studying single living cells and chromosomes by confocal Raman microspectroscopy[J]. Nature, 1990, 347(6290): 301-303.
[12] Huang W E, Griffiths R I, Thompson I P, et al. Raman microscopic analysis of single microbial cells[J]. Analytical Chemistry, 2004, 76(15): 4452-4458.
[13] Wang Y, Huang W E, Cui L, et al. Single cell stable isotope probing in microbiology using Raman microspectroscopy[J]. Current Opinion in Biotechnology, 2016, 41: 34-42.
[14] Cui L, Yang K, Li H Z, et al. Functional Single-Cell Approach to Probing Nitrogen-Fixing Bacteria in Soil Communities by Resonance Raman Spectroscopy with 15N2 Labeling[J]. Analytical Chemistry, 2018, 90(8): 5082-5089.
[15] 依丽努尔·木合塔尔, 沈爱国,胡继明. 细菌的拉曼光谱研究进展[J]. 光散射学报, 2015, 27(02): 110-118. (Iinur Muhtar, Shen Ai-guo, Hu Ji-ming, et al. Advances of Raman Spectroscopic Studies on Bacteria[J]. The Journal of Light Scattering, 2015, 27(02): 110-118.)
[16] Moritz T J, Polage C R, Taylor D S, et al. Evaluation of Escherichia coli Cell Response to Antibiotic Treatment by Use of Raman Spectroscopy with Laser Tweezers[J]. Journal of Clinical Microbiology, 2010, 48(11): 4287-4290.
[17] Teng L, Wang X, Wang X J, et al. Label-free, rapid and quantitative phenotyping of stress response in E. coli via ramanome[J]. Scientific Reports, 2016, 6: 34359.
[18] Tao Y, Wang Y, Huang S, et al. Metabolic-Activity-Based Assessment of Antimicrobial Effects by D2O-Labeled Single-Cell Raman Microspectroscopy[J]. Analytical Chemistry, 2017, 89(7): 4108-4115.
[19] Yang K, Li H Z, Zhu X, et al. Rapid Antibiotic Susceptibility Testing of Pathogenic Bacteria Using Heavy-Water-Labeled Single-Cell Raman Spectroscopy in Clinical Samples[J]. Analytical Chemistry, 2019, 91(9): 6296-6303.
[20] Cui L, Zhang Y J, Huang W E, et al. Surface-Enhanced Raman Spectroscopy for Identification of Heavy Metal Arsenic(V)-Mediated Enhancing Effect on Antibiotic Resistance[J]. Analytical Chemistry, 2016, 88(6): 3164-3170.
[21] Nie S, Emory S R, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering[J]. Science, 1997, 275(5303): 1102-1106.
[22] Maquelin K, Choo-Smith L P, van Vreeswijk T, et al. Raman Spectroscopic Method for Identification of Clinically Relevant Microorganisms Growing on Solid Culture Medium[J]. Analytical Chemistry, 2000, 72(1): 12-19.
[23] Schuster K C, Reese I, Urlaub E, et al. Multidimensional Information on the Chemical Composition of Single Bacterial Cells by Confocal Raman Microspectroscopy[J]. Analytical Chemistry, 2000, 72(22): 5529-5534.
[24] Buijtels P C A M, Willemse-Erix H F M, Petit P L C, et al. Rapid Identification of Mycobacteria by Raman Spectroscopy[J]. Journal of Clinical Microbiology, 2008, 46(3): 961-965.
[25] Lorenz B, Wichmann C, Stockel S, et al. Cultivation-Free Raman Spectroscopic Investigations of Bacteria[J]. Trends in Microbiology, 2017, 25(5): 413-424.
[26] Pahlow S, Meisel S, Cialla-May D, et al. Isolation and identification of bacteria by means of Raman spectroscopy[J]. Advanced Drug Delivery Reviews, 2015, 89: 105-120.
[27] Kloß S, Kampe B, Sachse S, et al. Culture Independent Raman Spectroscopic Identification of Urinary Tract Infection Pathogens: A Proof of Principle Study[J]. Analytical Chemistry, 2013, 85(20): 9610-9616.
[28] Kloß S, Lorenz B, Dees S, et al. Destruction-free procedure for the isolation of bacteria from sputum samples for Raman spectroscopic analysis[J]. Analytical and Bioanalytical Chemistry, 2015, 407(27): 8333-8341.
[29] Kloß S, RQsch P, Pfister W, et al. Toward Culture-Free Raman Spectroscopic Identification of Pathogens in Ascitic Fluid[J]. Analytical Chemistry, 2015, 87(2): 937-943.
[30] Jarvis R M, Goodacre R. Discrimination of Bacteria Using Surface-Enhanced Raman Spectroscopy[J]. Analytical Chemistry, 2004, 76(1): 40-47.
[31] Zhou H B, Yang D T, Ivleva N P, et al. SERS Detection of Bacteria in Water by in Situ Coating with Ag Nanoparticles[J]. Analytical Chemistry, 2014, 86(3): 1525-1533.
[32] Zhou H B, Yang D T, Ivleva N P, et al. Label-Free in Situ Discrimination of Live and Dead Bacteria by Surface-Enhanced Raman Scattering[J]. Analytical Chemistry, 2015, 87(13): 6553-6561.
[33] Chen P Y, Cui L, Zhang K S. Surface-enhanced Raman spectroscopy monitoring the development of dual-species biofouling on membrane surfaces[J]. Journal of Membrane Science, 2015, 473: 36-44.
[34] Walter A, März A, Schumacher W, et al. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device[J]. Lab on a Chip, 2011, 11(6): 1013-1021.
[35] Galvan D D, Yu Q. Surface-Enhanced Raman Scattering for Rapid Detection and Characterization of Antibiotic-Resistant Bacteria[J]. Advanced Healthcare Materials, 2018, 7(13): 1701335.
[36] Ashkin A, Dziedzic J M. Optical Trapping and Manipulation of Viruses and Bacteria[J]. Science, 1987, 235(4795): 1517-1520.
[37] Xie C, Dinno M A, Li Y. Near-infrared Raman spectroscopy of single optically trapped biological cells[J]. Optics Letters, 2002, 27(4): 249-251.
[38] Xie C, Dinno M A, Li Y. Raman sorting and identification of single living micro-organisms with optical tweezers[J]. Optics Letters, 2005, 30(14): 1800-1802.
[39] Chen D, Huang S, Li Y. Real-Time Detection of Kinetic Germination and Heterogeneity of Single Bacillus Spores by Laser Tweezers Raman Spectroscopy[J]. Analytical Chemistry, 2006, 78(19): 6936-6941.
[40] SchrQder U C, Ramoji A, Glaser U, et al. Combined Dielectrophoresis- Raman Setup for the Classification of Pathogens Recovered from the Urinary Tract[J]. Analytical Chemistry, 2013, 85(22): 10717-10724.
[41] Gan Q H, Wang X T, Wang Y, et al. Culture-Free Detection of Crop Pathogens at the Single-Cell Level by Micro-Raman Spectroscopy[J]. Advanced Science, 2017, 4(11).
[42] Kirchhoff J, Glaser U, Bohnert J A, et al. Simple Ciprofloxacin Resistance Test and Determination of Minimal Inhibitory Concentration within 2 h Using Raman Spectroscopy[J]. Analytical Chemistry, 2017, 90(3): 1811-1818.
[43] Schroder U C, Beleites C, Assmann C, et al. Detection of vancomycin resistances in enterococci within 3 1/2 hours[J]. Scientific Reports, 2015, 5: 8217.
[44] Cui L, Chen P, Zhang B, et al. Interrogating chemical variation via layer-by-layer SERS during biofouling and cleaning of nanofiltration membranes with further investigations into cleaning efficiency[J]. Water Research, 2015, 87: 282-291.
[45] Zhang B, Cui L, Zhang K. Dosage- and time-dependent antibacterial effect of zinc oxide nanoparticles determined by a highly uniform SERS negating undesired spectral variation[J]. Analytical and Bioanalytical Chemistry, 2016, 408(14): 3853-3865.
[46] StQckel S, Meisel S, Elschner M, et al. Raman spectroscopic detection and identification of Burkholderia mallei and Burkholderia pseudomallei in feedstuff[J]. Analytical and Bioanalytical Chemistry, 2015, 407(3): 787-794.
[47] He H, Xu M, Zong C, et al. Speeding Up the Line-Scan Raman Imaging of Living Cells by Deep Convolutional Neural Network[J]. Analytical Chemistry, 2019, 91(11): 7070-7077.
[48] Fan X, Ming W, Zeng H, et al. Deep learning-based component identification for the Raman spectra of mixtures[J]. Analyst, 2019, 144(5): 1789-1798.
[49] Premasiri W R, Lee J C, Sauer-Budge A, et al. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS[J]. Analytical and Bioanalytical Chemistry, 2016, 408(17): 4631-4647.
[50] Premasiri W R, Chen Y, Williamson P M, et al. Rapid urinary tract infection diagnostics by surface-enhanced Raman spectroscopy (SERS): identification and antibiotic susceptibilities[J]. Analytical and Bioanalytical Chemistry, 2017, 409(11): 3043-3054.
[51] Liu T Y, Tsai K T, Wang H H, et al. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood[J]. Nature Communications, 2011, 2: 538.
[52] Gu H, Ho P L, Tsang K W T, et al. Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration[J]. Journal of the American Chemical Society, 2003, 125(51): 15702-15703.
[53] Kelly J, Patrick R, Patrick S, et al. Surface-enhanced Raman Spectroscopy for the Detection of a Metabolic Product in the Headspace Above Live Bacterial Cultures[J]. Angewandte Chemie International Edition, 2018, 57(48): 15686-15690.
[54] Li M Q, Canniffe D P, Jackson P J, et al. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities[J]. ISME Journal, 2012, 6(4): 875-885.
[55] Huang W E, Stoecker K, Griffiths R, et al. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function[J]. Environmental Microbiology, 2007, 9(8): 1878-1889.
[56] 崔丽, 杨凯, 许晓雅. SERS-稳定同位素标记技术研究氮相关功能/活性微生物[J]. 光散射学报, 2018, 30(02): 97-102. (Cui Li, Yang Kai, Xu Xiaoya, et al. Surface-Enhanced Raman Spectroscopy Combined with Stable Isotope Probing to Study Nitrogen Assimilation by Microorganisms[J]. The Journal of Light Scattering, 2018, 30(02): 97-102).
[57] Li H Z, Bi Q, Yang K, et al. D2O-Isotope-Labeling Approach to Probing Phosphate-Solubilizing Bacteria in Complex Soil Communities by Single-Cell Raman Spectroscopy[J]. Analytical Chemistry, 2019, 91(33): 2239-2246.
[58] Zhang S, Guo L, Yang K, et al. Induction of Escherichia coli Into a VBNC State by Continuous-Flow UVC and Subsequent Changes in Metabolic Activity at the Single-Cell Level[J]. Frontiers in Microbiology, 2018, 9: 2243.
[59] Morais C L M, Paraskevaidi M, Cui L, et al. Standardization of complex biologically derived spectrochemical datasets[J]. Nature Protocols, 2019, 14(5): 1546-1577.
PDF(1106 KB)

237

Accesses

0

Citation

Detail

Sections
Recommended

/