Ultra-sensitive Detection of Leukemia Fusion Gene (b3a2) by SERS Spectra

WANG Yunyi, LIN Xueliang, XIE Jiawen, QIN Tiandi, HUANG Yun, HUANG Huifang, FENG Shangyuan

PDF(1237 KB)
Chinese Journal of Light Scattering ›› 2019, Vol. 31 ›› Issue (4) : 373-380. DOI: 10.13883/j.issn1004-5929.201904010
Application in Chemistry and Biology Researches

Ultra-sensitive Detection of Leukemia Fusion Gene (b3a2) by SERS Spectra

  • WANG Yunyi1, LIN Xueliang1, XIE Jiawen1, QIN Tiandi2, HUANG Yun2, HUANG Huifang2*, FENG Shangyuan1*
Author information +
History +

Abstract

In patients with Chronic Myeloid Leukemia (CML), fusion genes appear and produce corresponding proteins, which have kinase functions that severely affect cell metabolism, leading to abnormal cell cycle and eventually deterioration into cancer cells. The BCR-ABL fusion gene (b3a2) is clinically useful as a diagnostic marker for chronic myeloid leukemia, but current clinical detection methods have defects such as low sensitivity and specificity. In this study, a silane coupling agent was used to modify the silica sheet and protonated to adsorb the negatively charged silver nanoparticles (AgNPs). Finally, the silver and amino groups were firmly bonded to the silica sheet to form a two-dimensional Surface-Enhanced Raman Spectroscopy (SERS) substrate. Then, the BCR-ABL fusion gene (b3a2) was quantitatively detected by detecting the SERS signal of Cy5 by combining the signal chain modified with positive AgNPs and the capture chain modified on SERS substrate with the BCR-ABL fusion gene (b3a2). The results show that the BCR-ABL fusion gene (b3a2) could be detected with high sensitivity and specificity, and the detection limit could reach 42.28 fmol / L. This method provides a potential solution for clinically ultrasensitive detection of BCR-ABL fusion gene, and can well solve the problems of low sensitivity and weak specificity in clinical detection.

Key words

Chronic myeloid leukemia (CML) / BCR-ABL fusion gene (b3a2) / Surface-enhanced Raman spectroscopy (SERS) / Ultra-sensitive detection

Cite this article

Download Citations
WANG Yunyi, LIN Xueliang, XIE Jiawen, QIN Tiandi, HUANG Yun, HUANG Huifang, FENG Shangyuan. Ultra-sensitive Detection of Leukemia Fusion Gene (b3a2) by SERS Spectra. Chinese Journal of Light Scattering. 2019, 31(4): 373-380 https://doi.org/10.13883/j.issn1004-5929.201904010

References

[1] Deininger M W N, Goldman J M, Melo J V. The molecular of chronicmyeloid leukemia[J]. Blood, 2000, 96(10): 3343- 3356
[2] Zhu Y, Qian S X. Clinical efficacy and safety of imatinib in the management of Ph+ chronic myeloid or acute lymphoblastic leukemia in Chinese patients[J]. OncoTargets and therapy, 2014, 7: 395.
[3] 梁亮, 王巍,李庆华,等.双色双融合及双色分离探针检测成人急性淋巴细胞白血病BCR-ABL融合基因及11q23/MLL基因重排[J]. 吉林医学,2015,36(03):424-426. (Liang Liang, Wang Wei, Li Qinghua, et al.Detection of BCR-ABL fusion gene and 11q23/MLL gene re-arangement in adult acute lymphoblastic leukemia by two-color double fusion and two-color separation probe[J]. Jilin Medical Journal, 2015, 36 (03): 424-426.)
[4] 郑岚, 郑浩,姚晓玲.白血病相关融合基因的研究进展[J]. 淮海医药,2018,36(05):624-628. (Zheng Wei, Zheng Hao,Yao Xiaoling.Research progress in leukemia-associated fusion genes[J]. Journal of Huaihai Medicine,2018,36(05):624-628.)
[5] 黄赛, 杨华,高丽,等.实时荧光定量PCR检测急性髓系白血病患者MLL-AF9融合基因表达的预后意义[J].中国实验血液学杂志,2013,21(06):1435-1440. (Huang Sai, Yang Hua, Gao Li, et al.Prognostic significance of real-time fluorescent quantitative PCR for detect-ion of MLL-AF9 fusion gene expression in patients with acute myeloid leukemia[J]. Journal of Experimental Hematology,2013, 21 (06): 1435-1440.)
[6] 姜孟孟, 高丽,靖彧,等.成人急性髓系白血病患者AML1融合基因的快速检测及其临床意义(英文)[J]. 中国实验血液学杂志, 2013,21(04):821-829. (Jiang Mengmeng, Gao Li, Jing Jing, et al. Rapid detection of AML1 fusion gene in adult patients with acute myeloid leukemia and its clinical significance (English)[J]. Journal of Experimental Hematology, 2013, 21 (04): 821-829.)
[7] Sui W, Shi Z, Xue W, et al. Circular RNA and gene expression profiles in gastric c-ancer based on microarray chip technology[J]. Oncology reports, 2017, 37(3): 1804-1814.
[8] Zheng F, Yu X, Huang J, et al. Circular RNA expression profiles of peripheral bloodmononuclear cells in rheumatoid arthritis patients, based on microarray chip technolog-y[J]. Molecular medicine reports, 2017, 16(6): 8029-8036.
[9] 肖恒, 任彦斌,杨志明,等.实时荧光定量PCR检测BCR-ABL融合基因的临床意义[J].中国优生与遗传杂志, 2017,25(05):22-23+28. (Xiao Heng,Ren Yanbin,Yang Zhiming,et al.The clinical significance of real-time fluorescent quantitative PCR for detecti-on of BCR-ABL fusion gene[J]. Journal of Experimental Hematology, 2017,25(05):22-23+28.)
[10] Bell S E J, Sirimuthu N M S. Quantitative surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2008, 37(5): 1012-1024.
[11] Zong C, Xu M, Xu L J, et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges[J]. Chemical reviews, 2018, 118(10): 4946-4980.
[12] Feng S, Zheng Z, Xu Y, et al. A noninvasive cancer detection strategy based on gold nanoparticle surface-enhanced raman spectroscopy of urinary modified nucleosides is-olated by affinity chromatography[J]. Biosensors and Bioelectronics, 2017, 91: 616-622.
[13] Lin X, Wang L, Lin H, et al. A novel urine analysis technique combining affinity c-hromatography with Au nanoparticle based surface enhanced Raman spectroscopy for potential applications in non-invasive cancer screening[J]. Journal of biophotonics, 2019, 12(4): e201800327.
[14] Liu M, Liu X, Huang Z, et al. Rapid discrimination of colon cancer cells with single base mutation in KRAS gene segment using laser tweezers Raman spectroscopy[J]. Journal of biophotonics, 2019, 12(3): e201800332.
[15] Lin D, Lin Y C, Yang S W, et al. Organometallic-Constructed Tip-Based Dual Chemical Sensing by Tip-Enhanced Raman Spectroscopy for Diabetes Detection[J]. ACS a-pplied materials & interfaces, 2018, 10(49): 41902-41908.8
[16] Lin D, Gong T, Hong Z Y, et al. Metal carbonyls for the biointerference-free ratiom-etric surface-enhanced raman spectroscopy-based assay for cell-free circulating DNA of epstein-barr virus in blood[J]. Analytical chemistry, 2018, 90(12): 7139-7147.
[17] 赵玉琳, 曾宇,李雅萍,等.修饰有Ag纳米颗粒的SiO2纳米线的制备及其拉曼增强效应研究[J]. 光散射学报, 2018,30(04):314-319. (Zhao Yulin, Zeng Yu,Li Yaping,et al. Preparation and Raman enhancement of SiO2 nanow-ires modified with Ag nanoparticles[J]. The Journal of Light Scattering, 2018, 30 (04): 314-319.)
[18] Lee P C, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. Journal of Physical Chemistry, 1982,86(17):3391-5.
[19] Jeong Y M, Im J W, Kim E R, et al. Surface-enhanced Raman scattering of rutheni-um (ii) complex adsorbed on silver colloid[J]. Bulletin of the Korean Chemical Soci-ety, 2001, 22(3): 318-320.
[20] Jeong Y M, Im J W, Kim E R, et al. Surface-enhanced Raman scattering of rutheni-um (ii) complex adsorbed on silver colloid[J]. Bulletin of the Korean Chemical Soci-ety, 2001, 22(3): 318-320.
[21] Silverstein R M, Bassler G C. Spectrometric identification of organic compounds[J]. Journal of Chemical Education, 1962, 39(11): 546.
[22] 许小燕, 李淑瑾,吴德印,顾仁敖.苯硫酚各种形态在金上的拉曼光谱研究[J].化学学报,2007(12):1095-1100. (Xu Xiaoyan, Li Shuzhen, Wu Deyin, Gu Renbiao.Raman spectros-copy study of various forms of thiophenols on gold[J]. Acta Chimica Sinica, 2007(12):1095-1100.)
[23] Lim D K, Jeon K S, Kim H M, et al. Nanogap-engineerable Raman-active nanod-umbbells for single-molecule detection[J]. Nature Materials, 2010,9(1):60-67.
[24] Dinish U S, Yaw F C, Agarwal A, et al. Development of highly reproducible na-nogap SERS substrates: Comparative performance analysis and its application for gluc-ose sensing[J]. Biosensors & Bioelectronics, 2011, 26(5):1987-1992.
[25] Lee J H, Nam J M, Jeon K S, et al. Tuning and Maximizing the Single-MoleculeSurface-Enhanced Raman Scattering from DNA-Tethered Nanodumbbells[J]. ACS Nano,2012, 6(11):9574-9584.
[26] Oh Y J, Jeong K H. Glass Nanopillar Arrays with Nanogap-Rich Silver Nanoislan-ds for Highly Intense Surface Enhanced Raman Scattering[J].Advanced Materials,2012, 24(17):2234-2237.
PDF(1237 KB)

49

Accesses

0

Citation

Detail

Sections
Recommended

/