The Impact of Reduction Nitridation on SERS Effect of V2O5 Film

PEI Yuan, WU Zhengang, WEI Hengyong, WU Mingming, CHEN Ying, WEI Yingna, LIU Zhanjun, LIU Yanmei, WANG Xuepei, LIU Haiyong

PDF(733 KB)
Chinese Journal of Light Scattering ›› 2020, Vol. 32 ›› Issue (1) : 52-57. DOI: 10.13883/j.issn1004-5929.202001006
SurfaceEnhanced Raman Scattering(SERS)

The Impact of Reduction Nitridation on SERS Effect of V2O5 Film

  • PEI Yuan1, WU Zhengang1*, WEI Hengyong2,3, WU Mingming2,3, CHEN Ying4, WEI Yingna2,3, LIU Zhanjun1, LIU Yanmei1, WANG Xuepei2,3, LIU Haiyong2,3
Author information +
History +

Abstract

V2O5 gel was prepared with C10H14O5V as V source by non-hydrolytic sol-gel method,then the V2O5 films was reduction nitriding by ammonia gas.XRD,FE-SEM, UV-VIS-NIR and RAMAN were used to characterize the membrane structure, optical properties and SERS effect.The results showed that with the increase of nitridation temperature, the grain size on the film increased gradually, and the grain development became better and better, and the crystal size reached 25 nm.After 600 ℃ reduction get the thin films, UV visible near infrared region the highest absorption rate, and forbidden band width is smaller than that of V2O5 films without nitriding.R6G was used as the probe molecule to study the SERS effect of thin film, and the results showed that the thin films had significant Raman enhancement effect at the nitridation temperature of 600, which was higher than that of V2O5 thin film without nitridation, and the Raman signal peak strength reached 485 cps at 620 cm-1.

Key words

vanadium nitride / vanadium pentoxide / SERS

Cite this article

Download Citations
PEI Yuan, WU Zhengang, WEI Hengyong, WU Mingming, CHEN Ying, WEI Yingna, LIU Zhanjun, LIU Yanmei, WANG Xuepei, LIU Haiyong. The Impact of Reduction Nitridation on SERS Effect of V2O5 Film. Chinese Journal of Light Scattering. 2020, 32(1): 52-57 https://doi.org/10.13883/j.issn1004-5929.202001006

References

[1]Rodríguez-fermández D, Langer J, Henriksen-lacey M, et al. Hybrid Au-SiO2 core-satellite colloids as switchable SERS tags[J]. Chem Materials, 2015, 27(7): 2540-2545.
[2]Liu N, Zhang P, Li L, et al. Silver-embedded zeolite crystals as substrates for surface-enhanced Raman scattering [J]. Journal of Materials Science, 2011, 46(9): 3162-3168.
[3]Yevgeniya K, Mariia E, Pavel P, et al. Flexible SERS substrate for portable Raman analysis of biosamples[J]. Applied Surface Science, 2018, 458(11): 95-99.
[4]丁倩倩. Au基复合纳米催化剂的性能及其SERS原位监测催化过程的研究[D]. 中国科学技术大学, 2016.(Ding Qianqian. Catalytic performance of Au-based nanocatalysts and in situ SERS monitoring of catalytic reaction[D]. University of Science and Technology of China, 2016.)
[5]朱奥男, 高稔现, 陈雷, 等. 基于倾斜Ag纳米棒表面等离子共振的SERS光谱研究[J]. 光谱学与光谱分析, 2018, 38(S1): 161-162.(Zhu Aonan, Gao Renxian, Chen Lei, et al. Study on SERS Spectra of Plasma Resonance on the Surface of Slanted Ag Nanoparticles[J]. Spectroscopy and spectral analysis, 2018, 38(S1): 161-162.)
[6]汤俊琪, 田超, 曾崇毅, 等. 碱性银胶的表面增强拉曼效应及对牛奶中三聚氰胺的检测[J]. 光谱学与光谱分析, 2013, 33(03): 709-713.(Tang Junqi, Tian Chao, Zeng Chongyi, et al. Alkaline silver colloid for surface enhanced raman scattering and application to detection of melamine doped milk[J]. Spectroscopy and Spectral Analysis, 2013, 33(3): 709-713.)
[7]Yang L, Qin X, Jiang X, et al. SERS investigation of ciprofloxacin drug molecules on TiO2 nanoparticles[J]. Physical Chemistry Chemical Physics, 2015, 17(27): 17809-17815.
[8]Zhao J, Lin J, Wei H, et al. Surface enhanced Raman scattering substrates based on titanium nitride nanorods[J]. Optical Materials, 2015, 47(9): 219-224.
[9]李书超. 均相和多相体系中钒氧物种的SERS研究[D]. 南京大学, 2015.(LI Shuchao. The SERS study of V-O aggregation state in homogeneous and heterogeneous systems[D]. Nanjing University, 2015.)
[10]Pan J, Li M, Luo Y Y, et al. Synthesis and SERS activity of V2O5 nanoparticles[J]. Applied Surface Science, 2015, 333(4): 34-38.
[11]Xiang X, Shi X, Gao X, et al. Effect of N-doping on absorption and luminescence of anatase TiO2 films[J]. Chinese Physics Letters, 2012, 29(2): 027801.
[12]Moskovits, Martin. Surface-enhanced spectroscopy[J]. Reviews of Modern Physics, 1985, 57(3):783-826.
[13]Cheng C, Yan B, Wong S M, et al. Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays[J]. ACS Applied Materials &Interfaces, 2010, 2(7):1824-1828.
[14]Chen Y, Jaakola J J, Säynätjoki A, et al. Glass-embedded silver nanoparticlepatterns by masked ion-exchange process for surface-enhanced Raman scattering[J]. J Raman Spectrosc. 2011, 42(5): 936-940.
[15]Liu C S, Li B H, Chen C H, et al. Enhancement in SERS intensities of azo dyes adsorbed on ZnO by plasma treatment[J]. Journal of Raman Spectroscopy, 2014, 45(5): 332-337.
[16]Moskovits M. Surface-enhanced spectroscopy[J]. Reviews of Modern Physics, 1985, 57(3): 783-826.
[17]邱文强, 陈荣, 程敏, 等. 表面增强拉曼散射机理研究进展[J]. 激光生物学报, 2010, 19(5):700-705.(Qiu Wenqiang, Chen Rong, Cheng Min, et al. Advance in mechanism on surface-enhanced Raman scattering[J]. Acta Laser Biology Sinica, 2010, 19(5): 700-705.)
PDF(733 KB)

126

Accesses

0

Citation

Detail

Sections
Recommended

/