Recent Advances of Raman Spectroscopy in Structural Characterization of Two-dimensional Materials

DONG Wenlong, LIU Luqi

PDF(2476 KB)
Chinese Journal of Light Scattering ›› 2021, Vol. 33 ›› Issue (1) : 1-15. DOI: 10.13883/j.issn1004-5929.202101001
Overview

Recent Advances of Raman Spectroscopy in Structural Characterization of Two-dimensional Materials

  • DONG Wenlong1,2, LIU Luqi1*
Author information +
History +

Abstract

Two-dimensional (2D) materials, with remarkably electronic, optical, and thermal properties, have attracted tremendous attention in recent years. To meet the rapid development of 2D materials, it's fundamentally necessary to the precisely characterize the structure and properties of 2D materials. Raman spectroscopy has been proven to be a fast, convenient, and nondestructive technique to characterize the basic structural information of low dimensional materials. In this review, we introduce recent advances in Raman spectroscopy for structural characterization of 2D materials. We mainly focus on the characterization of layer number, stacking order, crystalline orientation, defects, and structural phase transition of 2D materials by Raman spectroscopy.

Key words

two-dimensional materials / Raman spectroscopy / structural characterization

Cite this article

Download Citations
DONG Wenlong, LIU Luqi. Recent Advances of Raman Spectroscopy in Structural Characterization of Two-dimensional Materials. Chinese Journal of Light Scattering. 2021, 33(1): 1-15 https://doi.org/10.13883/j.issn1004-5929.202101001

References

[1]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
[2]Novoselov K S, Fal V, Colombo L, et al. A roadmap for graphene [J]. Nature, 2012, 490(7419): 192-200.
[3]Tan C, Cao X, Wu X-J, et al. Recent advances in ultrathin two-dimensional nanomaterials [J]. Chemical Reviews, 2017, 117(9): 6225-6331.
[4]Elias C, Valvin P, Pelini T, et al. Direct band-gap crossover in epitaxial monolayer boron nitride [J]. Nature Communications, 2019, 10(1): 1-7.
[5]Tang H, Liang D, Qiu R L, et al. Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons [J]. ACS Nano, 2011, 5(9): 7510-7516.
[6]Ribeiro H B, Pimenta M A, de Matos C J. Raman spectroscopy in black phosphorus [J]. Journal of Raman Spectroscopy, 2018, 49(1): 76-90.
[7]Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor [J]. Physical Review Letters, 2010, 105(13): 136805.
[8]Ruppert C, Aslan O B, Heinz T F. Optical properties and band gap of single-and few-layer MoTe2 crystals [J]. Nano Letters, 2014, 14(11): 6231-6236.
[9]Zheng F, Cai C, Ge S, et al. On the quantum spin hall gap of monolayer 1T′‐WTe2 [J]. Advanced Materials, 2016, 28(24): 4845-4851.
[10]Fan X, Chen H, Zhao L, et al. Quick suppression of superconductivity of NbSe2 by Rb intercalation [J]. Solid State Communications, 2019, 297: 6-10.
[11]Gupta A, Sakthivel T, Seal S. Recent development in 2D materials beyond graphene [J]. Progress in Materials Science, 2015, 73: 44-126.
[12]Novoselov K, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures [J]. Science, 2016, 353(6298):
[13]张树霖. 拉曼光谱学与低维纳米半导体 [M]. 科学出版社, 2008.
[14]Tan P-H. Raman Spectroscopy of two-dimensional materials [M]. Springer, 2018.
[15]Malard L, Pimenta M A, Dresselhaus G, et al. Raman spectroscopy in graphene [J]. Physics Reports, 2009, 473(5-6): 51-87.
[16]Li X L, Han W P, Wu J B, et al. Layer‐number dependent optical properties of 2D materials and their application for thickness determination [J]. Advanced Functional Materials, 2017, 27(19): 1604468.
[17]Xia J, Yan J, Shen Z X. Transition metal dichalcogenides: structural, optical and electronic property tuning via thickness and stacking [J]. FlatChem, 2017, 4: 1-19.
[18]Sarkar S, Pradeepa H, Nayak G, et al. Evolution of inter-layer coupling in artificially stacked bilayer MoS2 [J]. Nanoscale Advances, 2019, 1(11): 4398-4405.
[19]Tomori H, Nakamura K, Kanda A. Improved method for determining crystallographic orientation of strained graphene by Raman spectroscopy [J]. Applied Physics Express, 2020, 13(7): 075006.
[20]Choi Y, Kim K, Lim S Y, et al. Complete determination of the crystallographic orientation of ReX2 (X= S, Se) by polarized Raman spectroscopy [J]. Nanoscale Horizons, 2020, 5(2): 308-315.
[21]Beams R, Cançado L G, Novotny L. Raman characterization of defects and dopants in graphene [J]. Journal of Physics: Condensed Matter, 2015, 27(8): 083002.
[22]Lan Y, Zondode M, Deng H, et al. Basic concepts and recent advances of crystallographic orientation determination of graphene by Raman spectroscopy [J]. Crystals, 2018, 8(10): 375.
[23]Iqbal M W, Shahzad K, Akbar R, et al. A review on Raman finger prints of doping and strain effect in TMDCs [J]. Microelectronic Engineering, 2020, 219: 111152.
[23]Li J, Su W, Chen F, et al. Atypical defect-mediated photoluminescence and resonance raman spectroscopy of monolayer WS2 [J]. The Journal of Physical Chemistry C, 2019, 123(6): 3900-3907.
[25]Cançado L G, Da Silva M G, Ferreira E H M, et al. Disentangling contributions of point and line defects in the Raman spectra of graphene-related materials [J]. 2D Materials, 2017, 4(2): 025039.
[26]Wu J-B, Lin M-L, Cong X, et al. Raman spectroscopy of graphene-based materials and its applications in related devices [J]. Chemical Society Reviews, 2018, 47(5): 1822-1873.
[27]Wang Y Y, Ni Z H, Yu T, et al. Raman studies of monolayer graphene: the substrate effect [J]. The Journal of Physical Chemistry C, 2008, 112(29): 10637-10640.
[28]Ferrari A C, Meyer J, Scardaci V, et al. Raman spectrum of graphene and graphene layers [J]. Physical Review Letters, 2006, 97(18): 187401.
[29]Hao Y, Wang Y, Wang L, et al. Probing layer number and stacking order of few‐layer graphene by Raman spectroscopy [J]. Small, 2010, 6(2): 195-200.
[30]Graf D, Molitor F, Ensslin K, et al. Spatially resolved Raman spectroscopy of single-and few-layer graphene [J]. Nano Letters, 2007, 7(2): 238-242.
[31]Wang Y, Ni Z, Shen Z, et al. Interference enhancement of Raman signal of graphene [J]. Applied Physics Letters, 2008, 92(4): 043121.
[32]Gupta A, Chen G, Joshi P, et al. Raman scattering from high-frequency phonons in supported n-graphene layer films [J]. Nano Letters, 2006, 6(12): 2667-2673.
[33]Lee C, Yan H, Brus L E, et al. Anomalous lattice vibrations of single-and few-layer MoS2 [J]. ACS Nano, 2010, 4(5): 2695-2700.
[34]Tan P, Han W, Zhao W, et al. The shear mode of multilayer graphene [J]. Nature Materials, 2012, 11(4): 294-300.
[35]Zhang X, Han W, Wu J, et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2 [J]. Physical Review B, 2013, 87(11): 115413.
[36]Wu J-B, Zhang X, Ijäs M, et al. Resonant Raman spectroscopy of twisted multilayer graphene [J]. Nature Communications, 2014, 5(1): 1-8.
[37]Zhang X, Tan Q-H, Wu J-B, et al. Review on the Raman spectroscopy of different types of layered materials [J]. Nanoscale, 2016, 8(12): 6435-6450.
[38]Song Q, Tan Q, Zhang X, et al. Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2 [J]. Physical Review B, 2016, 93(11): 115409.
[39]Ling X, Liang L, Huang S, et al. Low-frequency interlayer breathing modes in few-layer black phosphorus [J]. Nano Letters, 2015, 15(6): 4080-4088.
[40]Stenger I, Schué L, Boukhicha M, et al. Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals [J]. 2D Materials, 2017, 4(3): 031003.
[41]Molina-Sanchez A, Wirtz L. Phonons in single-layer and few-layer MoS2 and WS2 [J]. Physical Review B, 2011, 84(15): 155413.
[42]Lui C H, Li Z, Mak K F, et al. Observation of an electrically tunable band gap in trilayer graphene [J]. Nature Physics, 2011, 7(12): 944-947.
[43]Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides [J]. Nature Nanotechnology, 2012, 7(11): 699-712.
[44]Hou Y, Ren X, Fan J, et al. Preparation of Twisted Bilayer Graphene via the Wetting Transfer Method [J]. ACS Applied Materials & Interfaces, 2020, 12(36): 40958-40967.
[45]Lui C H, Li Z, Chen Z, et al. Imaging stacking order in few-layer graphene [J]. Nano Letters, 2011, 11(1): 164-169.
[46]Zhang X, Han W-P, Qiao X-F, et al. Raman characterization of AB-and ABC-stacked few-layer graphene by interlayer shear modes [J]. Carbon, 2016, 99: 118-122.
[47]Li G, Luican A, Dos Santos J L, et al. Observation of Van Hove singularities in twisted graphene layers [J]. Nature Physics, 2010, 6(2): 109-113.
[48]Liao L, Wang H, Peng H, et al. van Hove singularity enhanced photochemical reactivity of twisted bilayer graphene [J]. Nano Letters, 2015, 15(8): 5585-5589.
[49]Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 80-84.
[50]Cao Y, Fatemi V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices [J]. Nature, 2018, 556(7699): 43-50.
[51]Hod O, Meyer E, Zheng Q, et al. Structural superlubricity and ultralow friction across the length scales [J]. Nature, 2018, 563(7732): 485-492.
[52]Kim K, Coh S, Tan L Z, et al. Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure [J]. Physical Review Letters, 2012, 108(24): 246103.
[53]Carozo V, Almeida C M, Ferreira E H, et al. Raman signature of graphene superlattices [J]. Nano Letters, 2011, 11(11): 4527-4534.
[54]Nguyen T A, Lee J-U, Yoon D, et al. Excitation energy dependent Raman signatures of ABA-and ABC-stacked few-layer graphene [J]. Scientific Reports, 2014, 4: 4630.
[55]Lui C H, Ye Z, Keiser C, et al. Stacking-dependent shear modes in trilayer graphene [J]. Applied Physics Letters, 2015, 106(4): 041904.
[56]Lee J-U, Kim K, Han S, et al. Raman signatures of polytypism in molybdenum disulfide [J]. ACS Nano, 2016, 10(2): 1948-1953.
[57]Lu X, Utama M I B, Lin J, et al. Rapid and nondestructive identification of polytypism and stacking sequences in few‐layer molybdenum diselenide by Raman spectroscopy [J]. Advanced Materials, 2015, 27(30): 4502-4508.
[58]Puretzky A A, Liang L, Li X, et al. Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations [J]. ACS Nano, 2015, 9(6): 6333-6342.
[59]Wu J-B, Hu Z-X, Zhang X, et al. Interface coupling in twisted multilayer graphene by resonant Raman spectroscopy of layer breathing modes [J]. ACS Nano, 2015, 9(7): 7440-7449.
[60]Huang M, Yan H, Chen C, et al. Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy [J]. Proceedings of the National Academy of Sciences, 2009, 106(18): 7304-73-8.
[61]Wang Y, Cong C, Qiu C, et al. Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain [J]. Small, 2013, 9(17): 2857-2861.
[62]Yoon D, Son Y-W, Cheong H. Strain-dependent splitting of the double-resonance Raman scattering band in graphene [J]. Physical Review Letters, 2011, 106(15): 155502.
[63]Mohiuddin T, Lombardo A, Nair R, et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation [J]. Physical Review B, 2009, 79(20): 205433.
[64]Jegal S, Hao Y, Yoon D, et al. Crystallographic orientation of early domains in CVD graphene studied by Raman spectroscopy [J]. Chemical Physics Letters, 2013, 568: 146-150.
[65]Sasaki K-i, Wakabayashi K, Enoki T. Polarization dependence of Raman spectra in strained graphene [J]. Physical Review B, 2010, 82(20): 205407.
[66]Mohr M, Maultzsch J, Thomsen C. Splitting of the Raman 2D band of graphene subjected to strain [J]. Physical Review B, 2010, 82(20): 201409.
[67]Doratotaj D, Simpson J R, Yan J-A. Probing the uniaxial strains in MoS2 using polarized Raman spectroscopy: A first-principles study [J]. Physical Review B, 2016, 93(7): 075401.
[68]Ribeiro H B, Pimenta M A, De Matos C J, et al. Unusual angular dependence of the Raman response in black phosphorus [J]. ACS Nano, 2015, 9(4): 4270-4276.
[69]Wu J, Mao N, Xie L, et al. Identifying the crystalline orientation of black phosphorus using angle‐resolved polarized raman spectroscopy [J]. Angewandte Chemie International Edition, 2015, 54(8): 2366-2369.
[70]Wen W, Zhu Y, Liu X, et al. Anisotropic spectroscopy and electrical properties of 2D ReS2(1-x)Se2x alloys with distorted 1T structure [J]. Small, 2017, 13(12): 1603788.
[71]Beams R, Cançado L G, Krylyuk S, et al. Characterization of few-layer 1T′ MoTe2 by polarization-resolved second harmonic generation and Raman scattering [J]. ACS Nano, 2016, 10(10): 9626-9636.
[72]Liu L, Wu J, Wu L, et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers [J]. Nature Materials, 2018, 17(12): 1108-1114.
[73]Kim M, Han S, Kim J H, et al. Determination of the thickness and orientation of few-layer tungsten ditelluride using polarized Raman spectroscopy [J]. 2D Materials, 2016, 3(3): 034004.
[74]Kim J, Lee J-U, Lee J, et al. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus [J]. Nanoscale, 2015, 7(44): 18708-18715.
[75]Zhao H, Wu J, Zhong H, et al. Interlayer interactions in anisotropic atomically thin rhenium diselenide [J]. Nano Research, 2015, 8(11): 3651-3661.
[76]Liu X-L, Zhang X, Lin M-L, et al. Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials [J]. Chinese Physics B, 2017, 26(6): 067802.
[77]Mao N, Zhang S, Wu J, et al. Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy [J]. Nano Research, 2018, 11(6): 3154-3163.
[78]Wang X, Jones A M, Seyler K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus [J]. Nature Nanotechnology, 2015, 10(6): 517-521.
[79]Wolverson D, Crampin S, Kazemi A S, et al. Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor [J]. ACS Nano, 2014, 8(11): 11154-11164.
[80]Ling X, Huang S, Hasdeo E H, et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus [J]. Nano Letters, 2016, 16(4): 2260-2267.
[81]Wang T, Liu J, Xu B, et al. Identifying the Crystalline Orientation of Black Phosphorus by Using Optothermal Raman Spectroscopy [J]. ChemPhysChem, 2017, 18(20): 2828-2834.
[82]Mao N, Zhang S, Wu J, et al. Lattice vibration and raman scattering in anisotropic black phosphorus crystals [J]. Small Methods, 2018, 2(6): 1700409.
[83]Yang W, Yuan Z-Y, Luo Y-Q, et al. Raman-active modes of 1T′-WTe2 under tensile strain: A first-principles prediction [J]. Physical Review B, 2019, 99(23): 235401.
[84]Zhang S, Mao N, Wu J, et al. In‐Plane Uniaxial Strain in Black Phosphorus Enables the Identification of Crystalline Orientation [J]. Small, 2017, 13(30): 1700466.
[85]Luo W, Oyedele A D, Gu Y, et al. Anisotropic Phonon Response of Few‐Layer PdSe2 under Uniaxial Strain [J]. Advanced Functional Materials, 2020: 2003215.
[86]Zhu W, Liang L, Roberts R H, et al. Anisotropic electron-phonon interactions in angle-resolved Raman study of strained black phosphorus [J]. ACS Nano, 2018, 12(12): 12512-12522.
[87]Mao N, Tang J, Xie L, et al. Optical anisotropy of black phosphorus in the visible regime [J]. Journal of the American Chemical Society, 2016, 138(1): 300-3005.
[88]Luo X, Lu X, Koon G K W, et al. Large Frequency Change with Thickness in Interlayer Breathing Mode Significant Interlayer Interactions in Few Layer Black Phosphorus [J]. Nano Letters, 2015, 15(6): 3931-3938.
[89]He R, Yan J-A, Yin Z, et al. Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency Raman spectroscopy [J]. Nano Letters, 2016, 16(2): 1404-1409.
[90]Qiao X-F, Wu J-B, Zhou L, et al. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2 [J]. Nanoscale, 2016, 8(15): 8324-8332.
[91]Jeon I, Yoon B, He M, et al. Hyperstage graphite: electrochemical synthesis and spontaneous reactive exfoliation [J]. Advanced Materials, 2018, 30(3): 1704538.
[92]Son B, Kim H, Jeong H, et al. Electron beam induced removal of PMMA layer used for graphene transfer [J]. Scientific Reports, 2017, 7(1): 1-7.
[93]Wang H, Zhou Y, Wu D, et al. Synthesis of boron‐doped graphene monolayers using the sole solid feedstock by chemical vapor deposition [J]. Small, 2013, 9(8): 1316-1320.
[94]Liao L, Song Z, Zhou Y, et al. Photoinduced methylation of graphene [J]. Small, 2013, 9(8): 1348-1352.
[95]Pimenta M, Dresselhaus G, Dresselhaus M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy [J]. Physical Chemistry Chemical Physics, 2007, 9(11): 1276-1290.
[96]Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene [J]. Nature Nanotechnology, 2013, 8(4): 235-246.
[97]Venezuela P, Lazzeri M, Mauri F. Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands [J]. Physical Review B, 2011, 84(3): 035433.
[98]Eckmann A, Felten A, Verzhbitskiy I, et al. Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects [J]. Physical Review B, 2013, 88(3): 035426.
[99]Jiang J, Pachter R, Mehmood F, et al. A Raman spectroscopy signature for characterizing defective single-layer graphene: defect-induced I(D)/I(D′) intensity ratio by theoretical analysis [J]. Carbon, 2015, 90: 53-62.
[100]Eckmann A, Felten A, Mishchenko A, et al. Probing the nature of defects in graphene by Raman spectroscopy [J]. Nano Letters, 2012, 12(8): 3925-3930.
[101]Merlen A, Buijnsters J G, Pardanaud C. A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids: From graphene to amorphous carbons [J]. Coatings, 2017, 7(10): 153.
[102]Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Physical Review B, 2000, 61(20): 14095.
[103]Cançado L G, Jorio A, Ferreira E M, et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies [J]. Nano Letters, 2011, 11(8): 3190-3196.
[104]Lucchese M M, Stavale F, Ferreira E M, et al. Quantifying ion-induced defects and Raman relaxation length in graphene [J]. Carbon, 2010, 48(5): 1592-1597.
[105]Bendiab N, Renard J, Schwarz C, et al. Unravelling external perturbation effects on the optical phonon response of graphene [J]. Journal of Raman Spectroscopy, 2018, 49(1): 130-145.
[106]Mignuzzi S, Pollard A J, Bonini N, et al. Effect of disorder on Raman scattering of single-layer MoS2 [J]. Physical Review B, 2015, 91(19): 195411.
[107]朱宏伟. 石墨烯: 结构, 制备方法与性能表征 [M]. 清华大学出版社, 2011.
[108]Cancado L, Pimenta M, Neves B, et al. Influence of the atomic structure on the Raman spectra of graphite edges [J]. Physical Review Letters, 2004, 93(24): 247401.
[109]Gupta A K, Russin T J, Gutiérrez H R, et al. Probing graphene edges via Raman scattering [J]. ACS Nano, 2009, 3(1): 45-52.
[110]Casiraghi C, Hartschuh A, Qian H, et al. Raman spectroscopy of graphene edges [J]. Nano Letters, 2009, 9(4): 1433-1441.
[111]Cong C, Yu T, Wang H. Raman study on the G mode of graphene for determination of edge orientation [J]. ACS Nano, 2010, 4(6): 3175-3180.
[112]Sasaki K-i, Saito R, Wakabayashi K, et al. Identifying the orientation of edge of graphene using G band Raman spectra [J]. Journal of the Physical Society of Japan, 2010, 79(4): 044603.
[113]Mahjouri-Samani M, Liang L, Oyedele A, et al. Tailoring vacancies far beyond intrinsic levels changes the carrier type and optical response in monolayer MoSe2-x crystals [J]. Nano Letters, 2016, 16(8): 5213-5220.
[114]He Z, Zhao R, Chen X, et al. Defect engineering in single-layer MoS2 using heavy ion irradiation [J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42524-42533.
[115]Thiruraman J P, Fujisawa K, Danda G, et al. Angstrom-size defect creation and ionic transport through pores in single-layer MoS2 [J]. Nano Letters, 2018, 18(3): 1651-1659.
[116]Bera A, Muthu D, Sood A. Enhanced Raman and photoluminescence response in monolayer MoS2 due to laser healing of defects [J]. Journal of Raman Spectroscopy, 2018, 49(1): 100-105.
[117]Beams R. Tip‐enhanced Raman scattering of graphene [J]. Journal of Raman Spectroscopy, 2018, 49(1): 157-167.
[118]Lee C, Jeong B G, Yun S J, et al. Unveiling defect-related Raman mode of monolayer WS2 via tip-enhanced resonance Raman scattering [J]. ACS Nano, 2018, 12(10): 9982-9990.
[119]Kato R, Umakoshi T, Sam R T, et al. Probing nanoscale defects and wrinkles in MoS2 by tip-enhanced Raman spectroscopic imaging [J]. Applied Physics Letters, 2019, 114(7): 073105.
[120]Huang T-X, Cong X, Wu S-S, et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale [J]. Nature Communications, 2019, 10(1): 1-8.
[121]Mignuzzi S, Kumar N, Brennan B, et al. Probing individual point defects in graphene via near-field Raman scattering [J]. Nanoscale, 2015, 7(46): 19413-19418.
[122]Cho S, Kim S, Kim J H, et al. Phase patterning for ohmic homojunction contact in MoTe2 [J]. Science, 2015, 349(6248): 625-628.
[123]Li Y, Duerloo K-A N, Wauson K, et al. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating [J]. Nature Communications, 2016, 7(1): 1-8.
[124]Keum D H, Cho S, Kim J H, et al. Bandgap opening in few-layered monoclinic MoTe2 [J]. Nature Physics, 2015, 11(6): 482-486.
[125]Zhu J, Wang Z, Yu H, et al. Argon plasma induced phase transition in monolayer MoS2 [J]. Journal of the American Chemical Society, 2017, 139(30): 10216-10219.
[126]Song S, Keum D H, Cho S, et al. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain [J]. Nano Letters, 2016, 16(1): 188-193.
[127]Friedman A L, Hanbicki A T, Perkins F K, et al. Evidence for chemical vapor induced 2H to 1T phase transition in MoX2 (X= Se, S) transition metal dichalcogenide films [J]. Scientific Reports, 2017, 7(1): 1-9.
[128]Kan M, Nam H G, Lee Y H, et al. Phase stability and Raman vibration of the molybdenum ditelluride (MoTe2) monolayer [J]. Physical Chemistry Chemical Physics, 2015, 17(22): 14866-16871.
[129]Cong X, Liu X-L, Lin M-L, et al. Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials [J]. npj 2D Materials and Applications, 2020, 4(1): 1-12.
[130]Hossain M, Wu J, Wen W, et al. Chemical vapor deposition of 2D vanadium disulfide and diselenide and Raman characterization of the phase transitions [J]. Advanced Materials Interfaces, 2018, 5(16): 1800528.
[131]Zhou L, Xu K, Zubair A, et al. Large-area synthesis of high-quality uniform few-layer MoTe2 [J]. Journal of the American Chemical Society, 2015, 137(37): 11892-11895.
PDF(2476 KB)

1504

Accesses

0

Citation

Detail

Sections
Recommended

/