Enhanced absorption and manipulation of thermal radiation in silicon carbide gratings

BAO Sen, WANG Zongti, ZHENG Gaige

PDF(960 KB)
Chinese Journal of Light Scattering ›› 2021, Vol. 33 ›› Issue (1) : 79-83. DOI: 10.13883/j.issn1004-5929.202101011
Other Optical Spectroscopic Techniques and Applications

Enhanced absorption and manipulation of thermal radiation in silicon carbide gratings

  • BAO Sen, WANG Zongti, ZHENG Gaige
Author information +
History +

Abstract

The absorption and thermal radiation characteristics of the silicon carbide gratings within the wavelength range from 10 μm to 14 μm are studied and analyzed by the rigorous coupled wave analysis (RCWA) method. Influences of different physical parameters (period, depth, filling factor and incident angle) on the spectral properties are discussed in detail. The conclusions are as follows: Under TM-polarization, the period, grating depth, grating width and incidence have a significant effect on the absorption/emission spectral. With the increasing of the period and the grating depth, the absorption peak/emission peak will redshift and the peak will decrease. While the filling factor (f) decreases, the absorption peak appears within the Restrahlen band, and the smaller the f is, the larger the absorption peak is. When the incident angle is increased, the peak value of absorption/emission spectrum decreases. The conclusions of this study can also be extended to other polar crystal materials.

Key words

Silicon Carbide / Surface phonon polaritons / Grating

Cite this article

Download Citations
BAO Sen, WANG Zongti, ZHENG Gaige. Enhanced absorption and manipulation of thermal radiation in silicon carbide gratings. Chinese Journal of Light Scattering. 2021, 33(1): 79-83 https://doi.org/10.13883/j.issn1004-5929.202101011

References

[1]Greffet J, Carminati R, Joulain K, et al. Coherent emission of light by thermal source [J]. Nature 2002, 416: 61-64.
[2]Caldwell J D, Glembocki O J, Francescato Y, et al. Low-Loss, extreme subdiffraction photon confinement via silicon carbide localized surface phonon polariton resonators[J]. Nano Lett, 2013, 13 (8): 3690-3697.
[3]Dunkelberger A D, Ellis CT, Ratchford DC et al. Active tuning of surface phonon polariton resonances via carrier photoinjection[J]. Nature Photonics 2018,12: 50-56.
[4]Marquier F, Joulain K, Mulet J P, et al. Coherent spontaneous emission of light by thermal sources[J]. Phys. Rev. B, 2004, 69: 155412.
[5]Lee B J, Fu C J, Zhang Z M, Coherent thermal emission from one-dimensional photonic crystals[J]. Appl. Phys. Lett, 2005, 87(7):071904.
[6]王卫杰, 符策基, 谭文长. 微光栅对SiC/光子晶体结构热辐射特性的调控[J]. 工程热物理学报,2012, 33(7): 1206-1208.(Wang W J, Fu C J, Tan C W. Thermal radiative properties of a SiC/photonic crystal structure mediated with micro-grating[J]. Journal of Engineering Thermophysics, 2012, 33(7): 1206-1208.)
[7]Li K, Fitzgerald J M, Xiao X F, et al. Graphene Plasmon Cavities Made with Silicon Carbide[J]. ACS Omega, 2017, 2(7): 3640-3646.
[8]Chen D X, Dong J J, Yang J J, et al. Realization of near-perfect absorption in the whole reststrahlen band of SiC[J]. Nanoscale, 2018, 10:9450.
[9]SpannB T, Compton R, Ratchford D, et al. Photoinduced tunability of the reststrahlen band in 4H-SiC[J]. Phy Rev B, 2016, 93:085205.
[10]Neuner B, Korobkin D, Fietz C, et al. Critically coupled surface phonon-polariton excitation in silicon carbide[J]. Opt Lett, 2009, 34: 2667-2669.
[11]Zorman C A, Parro R J. Micro- and nanomechanical structures for silicon carbide MEMS and NEMS [J]. Phys Status Solidi B 2008, 245:1404-1424.
[12]Chalabi H, Alu A, Brongersma M L. Focused thermal emission from a nanostructured SiC surface[J]. Phys Rev B, 2016, 94(9):094307.
[13]Wood G S, Svilii B, Mastropaolo E, et al. 3C-Silicon Carbide Microresonators for Timing and Frequency Reference[J]. Micromachines, 2016, 7(11): 208.
[14]Li D F, Lawandy N M, Zia R, Surface phonon-polariton enhanced optical forces in silicon carbide nanostructures[J]. Opt Express, 2013, 21: 20900-20910.
PDF(960 KB)

386

Accesses

0

Citation

Detail

Sections
Recommended

/