Review of investigating the elastic and thermal properties by angle-resolved Brillouin light scattering

PANG Simin, XIE Yaru, ZHANG Jun

PDF(1364 KB)
Chinese Journal of Light Scattering ›› 2021, Vol. 33 ›› Issue (2) : 101-111. DOI: 10.13883/j.issn1004-5929.202102001
Overview

Review of investigating the elastic and thermal properties by angle-resolved Brillouin light scattering

  • PANG Simin1,2, XIE Yaru1,2, ZHANG Jun1,2,*
Author information +
History +

Abstract

The elastic and thermal properties are significant for investigating the basic properties of materials, the structure design and performance optimization of devices. In this paper, we review the basic principles of angle-resolved Brillouin light scattering and the methods to determine the elastic constants, Debye temperature, and lattice thermal conductivity utilizing the angle-resolved Brillouin light scattering spectroscopy. In addition, we introduce some experimental results about the applications of the angle-resolved Brillouin light scattering spectroscopy in investigating the elastic and thermal properties of bulk, film, and two-dimensional (2D) materials, together with the related physical phenomenon like phonon bottleneck effect and size effect. The angle-resolved Brillouin light scattering spectroscopy contributes to the further understanding of how to control the elastic and thermal properties through altering the thickness of materials, temperature, strain, and some other external conditions. Meanwhile, this technique also paves a new way for the researches on the elastic and thermal properties of 2D materials and photonic crystal.

Key words

Brillouin light scattering / elastic properties / thermal properties

Cite this article

Download Citations
PANG Simin, XIE Yaru, ZHANG Jun. Review of investigating the elastic and thermal properties by angle-resolved Brillouin light scattering. Chinese Journal of Light Scattering. 2021, 33(2): 101-111 https://doi.org/10.13883/j.issn1004-5929.202102001

References

[1]Luo J J, Wang X M, Li S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature,2019, 563 (7732): 541.
[2]Yang Y, Ostrowski D P, France R M, et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites[J]. Nat Photonics,2015, 10 (1): 53-59.
[3]Morell N, Tepsic S, Reserbat-Plantey A, et al. Optomechanical measurement of thermal transport in two-dimensional MoSe2 lattices[J]. Nano Lett,2019, 19 (5): 3143-3150.
[4]Peiner E, Tibrewala A, Bandorf R, et al. Diamond-like carbon for mems[J]. J Micromech Microeng,2007, 17 (7): S83-S90.
[5]Zhan X X, Li S J, Cui Y T, et al. Comparison of the osteoblastic activity of low elastic modulus Ti-24Nb-4Zr-8Sn alloy and pure titanium modified by physical and chemical methods[J]. Mater Sci Eng C Mater Biol Appl,2020, 113: 111018.
[6]Li X Y, Zha J W, Wang S J, et al. Effect of high-thermal conductivity epoxy resin on heat dissipation performance of saturated reactor[J]. IEEE Trans Dielectr Electr Insul,2017, 24 (6): 3898-3905.
[7]Lee S, Kang S H, Kwon Y K. Low lattice thermal conductivity of a two-dimensional phosphorene oxide[J]. Sci Rep,2019, 9 (1): 5149.
[8]Harrison R J, Redfern S A T, Salje E K H. Dynamical excitation and anelastic relaxation of ferroelastic domain walls in LaAlO3[J]. Phys Rev B,2004, 69 (14): 144101.
[9]Li H, Ma Y P, Zhou Z J, et al. Characterizing elastic and piezoelectric constants of piezoelectric materials from one sample using resonant ultrasound spectroscopy[J]. J Mater Sci,2019, 54 (9): 6786-6798.
[10]Letoublon A, Paofai S, Ruffle B, et al. Elastic constants, optical phonons, and molecular relaxations in the high temperature plastic phase of the CH3NH3PbBr3 hybrid perovskite[J]. J Phys Chem Lett,2016, 7 (19): 3776-3784.
[11]Dil J G. Brillouin-scattering in condensed matter[J]. Rep Prog Phys,1982, 45 (3): 285-334.
[12]程光煦. L.布里渊与布里渊散射[J]. 光散射学报,2018, 30 (3) (CHENG Guangxu. L. Brillouin and Brillouin scattering[J]. J Light Scattering, 2018, 30(3)).
[13]Hashimoto K Y. Surface acoustic wave devices in telecommunications. Modelling and simulation[M]. Berlin Heidelberg: Springer, 2000: 17-22.
[14]Carlotti G. Elastic characterization of transparent and opaque films, multilayers and acoustic resonators by surface brillouin scattering: A review[J]. Appl Sci-Basel,2018, 8 (1): 124.
[15]Madami M, Gubbiotti G, Tacchi S, et al. Application of microfocused brillouin light scattering to the study of spin waves in low-dimensional magnetic systems[J]. Solid State Phys,2012, 63: 79-150.
[16]Grimsditch M H, Ramdas A K. Brillouin scattering in diamond[J]. Phys Rev B,1975, 11 (8): 3139-3148.
[17]Arecchi F T, Schulzdubois E O. Laser handbook[M]. Amsterdam: North-Holland, 1972: 13-42.
[18]Vacher R, Boyer L. Brillouin scattering: A tool for the measurement of elastic and photoelastic constants[J]. Phys Rev B,1972, 6 (6): 639-673.
[19]Slack G A. Nonmetallic crystals with high thermal conductivity[J]. J Phys Chem Solids,1973, 34 (2): 321-335.
[20]Julian C L. Theory of heat conduction in rare-gas crystals[J]. Phys Rev,1965, 137 (1A): A128-A137.
[21]Jia T T, Gang C, Zhang Y S. Lattice thermal conductivity evaluated using elastic properties[J]. Phys Rev B,2017, 95 (15): 155206.
[22]Belomestnykh V N. The acoustical Grüneisen constants of solids[J]. Tech Phys Lett,2004, 30 (2): 91-93.
[23]Cahill D G, Watson S K, Pohl R O. Lower limit to the thermal-conductivity of disordered crystals[J]. Phys Rev B,1992, 46 (10): 6131-6140.
[24]Baloi M, Wamwangi D, Mathe B A, et al. Elastic properties and lattice thermal conductivity of amorphous Ge2Sb2Te5 and GeTe thin films[J]. J Appl Phys,2021, 129 (13): 135102.
[25]Xie Y R, Ren S L, Gao Y F, et al. Measuring bulk and surface acoustic modes in diamond by angle-resolved brillouin spectroscopy[J]. Sci China: Phys, Mech Astron,2021, 64 (8): 287311.
[26]Ferreira A C, Letoublon A, Paofai S, et al. Elastic softness of hybrid lead halide perovskites[J]. Phys Rev Lett,2018, 121 (8): 085502.
[27]Kuria J M, Wamwangi D, Comins D, et al. Surface brillouin scattering study of tantalum nitride(TaN) thin films[J]. J Opt Soc Am A,2020, 37 (11): C125-C131.
[28]Babacic V, Reig D S, Varghese S, et al. Thickness-dependent elastic softening of few-layer free-standing MoSe2[J]. Adv Mater,2021, 33 (23): 2008614.
[29]Gurbuz Y, Esame O, Tekin I, et al. Diamond semiconductor technology for RF device applications[J]. Solid·State Electron,2005, 49 (7): 1055-1070.
[30]Kahmann S, Loi M A. Hot carrier solar cells and the potential of perovskites for breaking the Shockley-Queisser limit[J]. J Mater Chem C,2019, 7 (9): 2471-2486.
[31]Yang J F, Wen X M, Xia H Z, et al. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites[J]. Nat Commun,2017, 8: 14120.
[32]Sekiguchi F, Hirori H, Yumoto G, et al. Enhancing the hot-phonon bottleneck effect in a metal halide perovskite by terahertz phonon excitation[J]. Phys Rev Lett,2021, 126 (7): 077401.
[33]Tewary V K. Green's-function method for modeling surface acoustic wave dispersion in anisotropic material systems and determination of material parameters[J]. Wave Motion,2004, 40 (4): 399-412.
[34]李小波, 唐大伟, 祝捷. 纳米金刚石颗粒导热系数的分子动力学研究[J]. 中国科学院研究生院学报,2008, 25 (5): 598-601 (LI Xiaobo, TANG Dawei, ZHU Jie. Molecular dynamics study on thermal conductivity of diamond nanoparticles[J]. J Grad Sch Chin Acad Sci, 2008, 25(5): 598-601).
PDF(1364 KB)

266

Accesses

0

Citation

Detail

Sections
Recommended

/